
Força Cortante Flexo Compressão Flexo Tração

Força Cortante

Força cortante resistente de cálculo:

Para perfis I, H e U fletidos em relação ao eixo de maior inércia

Passo 01: Comparar esbeltez da alma com dois limites (inferior e superior)

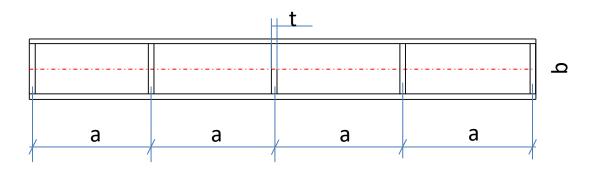
$$\lambda = \frac{h}{tw}$$

$$V_{Rd} = \frac{0,60.\,\text{Aw. Fy}}{1,1}$$

$$\lambda_p = 1.10. \sqrt{\frac{k_{v.} \cdot E}{F_y}}$$

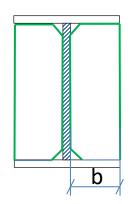
$$V_{Rd} = \frac{\lambda_p}{\lambda} \cdot \frac{0.60. \,\text{Aw. Fy}}{1.1}$$

$$\lambda_r = 1,37. \sqrt{\frac{k_{v.} \cdot E}{F_y}}$$

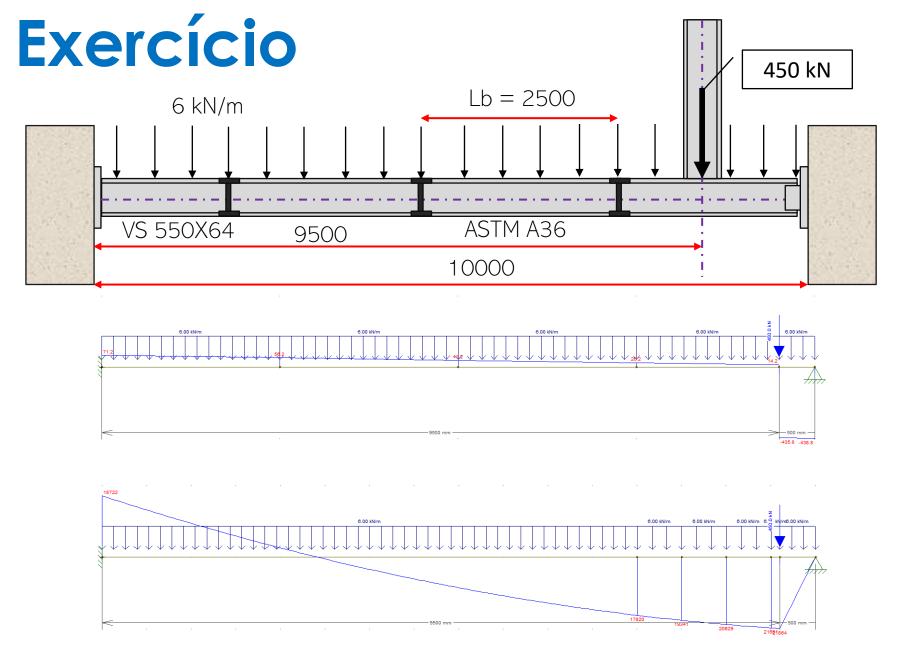

$$V_{Rd} = \frac{0,60. \text{ Aw. Fy}}{1,1}$$
 $\lambda_p = 1,10. \sqrt{\frac{k_{v.} E}{F_y}}$ $V_{Rd} = \frac{\lambda_p}{\lambda}. \frac{0,60. \text{ Aw. Fy}}{1,1}$ $\lambda_r = 1,37. \sqrt{\frac{k_{v.} E}{F_y}}$ $V_{Rd} = 1,24. \left(\frac{\lambda_p}{\lambda}\right)^2. \frac{0,60. \text{ Aw. Fy}}{1,1}$

$$Aw = d.tw$$

$$Aw = d. tw$$


$$k_{v} = \begin{cases} 5.0 \text{ para almas sem enrijecedores transversais, para } \frac{a}{h} > 3 \text{ ou para } \frac{a}{h} > \left[\frac{260}{(h/t_{w})}\right]^{2} \\ 5 + \frac{5}{(a/h)^{2}}, \text{ para todos os outros casos} \end{cases}$$

Força cortante resistente de cálculo:


Cálculo da espessura mínima do enrijecedor

$$\frac{b}{t} < 0.56 \sqrt{\frac{E}{Fy}}$$

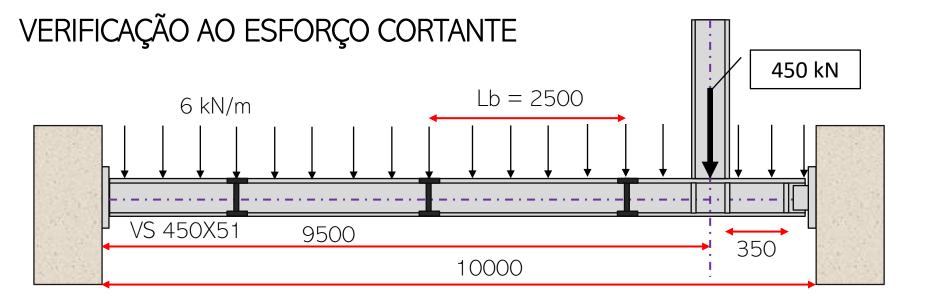
Para ASTM A36
$$\frac{b}{t} < 16$$

Para ASTM A572 GR50
$$\frac{b}{t}$$
 < 13,65

Curso de Projeto e Cálculo de Estruturas metálicas

Profile	Weight	Area	Height	nt Web		Flange		Axis X - X				Axis Y - Y				rt	lt	Cw	h/tw	b/2tf	d/Af	ec	u	u/A
VS	m	Α	d	tw	h	tf	bf	lx	Wx	rx	Zx	ly	Wy	ry	Zy	cm	cm4	cm5			cm-1	mm	m²/m	m-1
	kg/m	cm²	mm	mm	mm	mm	mm	cm4	cm³	cm	cm³	cm4	cm³	cm	cm³									
450x70	70.1	89.3	450	6.3	425	12.5	250	33946	1509	19.5	1652	3256	260	6.04	395	6.75	36.2	1557668	67	10	1.44	5	1.89	212
450x83	83.4	106.3	450	6.3	418	16	250	41523	1845	19.76	2011	4168	333	6.26	504	6.85	71.9	1962042	66	7.8	1.125	6	1.89	178
450x95	95	121	450	6.3	412	19	250	47818	2125	19.88	2315	4949	396	6.4	598	6.91	117.9	2297825	65	6.6	0.947	6	1.89	156
500x61	61.1	77.8	500	6.3	481	9.5	250	34416	1377	21.03	1529	2475	198	5.64	302	6.55	18.4	1488026	76	13.2	2.105	5	1.99	256
500x73	72.5	92.4	500	6.3	475	12.5	250	42768	1711	21.51	1879	3256	260	5.94	395	6.7	36.6	1934052	75	10	1.6	5	1.99	215
500x86	86	109.5	500	6.3	468	16	250	52250	2090	21.84	2281	4168	333	6.17	505	6.81	72.3	2440167	74	7.8	1.25	6	1.99	182
500x97	97.4	124.1	500	6.3	462	19	250	60154	2406	22.02	2621	4949	396	6.31	598	6.87	118.3	2861887	73	6.6	1.053	6	1.99	160
550x64	63.6	81	550	6.3	531	9.5	250	42556	1547	22.92	1728	2475	198	5.53	302	6.5	18.8	1806857	84	13.2	2.316	5	2.09	258
550x75	75	95.6	550	6.3	525	12.5	250	52747	1918	23.49	2114	3256	260	5.84	396	6.65	37	2351125	83	10	1.76	5	2.09	219
550x88	88.4	112.6	550	6.3	518	16	250	64345	2340	23.9	2559	4168	333	6.08	505	6.77	72.7	2970375	82	7.8	1.375	6	2.09	186
550x100	99.9	127.3	550	6.3	512	19	250	74041	2692	24.12	2935	4949	396	6.24	599	6.84	118.7	3487799	81	6.6	1.158	6	2.09	164
600x81	81.2	103.5	600	8	581	9.5	300	62768	2092	24.63	2358	4277	285	6.43	437	7.68	27.2	3726627	73	15.8	2.105	5	2.38	230
600x95	95	121	600	8	575	12.5	300	77401	2580	25.29	2864	5627	375	6.82	572	7.89	49.1	4853760	72	12	1.6	5	2.38	197
600x111	111	141.4	600	8	568	16	300	94091	3136	25.8	3448	7202	480	7.14	729	8.05	91.9	6139008	71	9.4	1.25	6	2.38	168
1																								

$$\lambda = \frac{h}{tw} = \frac{550 - 2.9,5}{6.3} = 84,28$$


$$V_{Rd} = \frac{\lambda_p}{\lambda} \cdot \frac{0.60. \,\text{Aw. Fy}}{1.1}$$

$$\lambda_p = 1,10. \sqrt{\frac{k_{v.} \cdot E}{F_y}} = 1,10. \sqrt{\frac{5.20500}{25}} = 70,43$$

$$V_{Rd} = \frac{70,43}{84,28} \cdot \frac{0,60.55 \cdot 0,63.25}{1,1} = 394,85 \ (Não \ OK!)$$

$$\lambda_r = 1,37. \sqrt{\frac{k_{v.} \cdot E}{F_y}} \rightarrow 1,37. \sqrt{\frac{5.20500}{25}} \rightarrow 87,72$$

VERIFICAÇÃO AO ESFORÇO CORTANTE

$$k_v = 5 + \frac{5}{\left(\frac{a}{h}\right)^2} \rightarrow k_v = 5 + \frac{5}{\left(\frac{35}{53.1}\right)^2} = 16,50$$
 $\lambda = \frac{h}{tw} = \frac{550 - 2.9,5}{6,3} = 84,28$

$$\lambda_p = 1,10. \sqrt{\frac{k_{v.}E}{F_y}} = 1,10. \sqrt{\frac{16,50.20500}{25}} = 127,95$$

$$\lambda_r = 1,37. \sqrt{\frac{k_{v.} E}{F_y}} \rightarrow 1,37. \sqrt{\frac{16,50.20500}{25}} \rightarrow 159,35$$

$$V_{Rd} = \frac{0,60.\,\text{Aw.\,Fy}}{1,1}$$

Espessura do Enrijecedor

$$\frac{b}{t} < 0.56 \sqrt{\frac{E}{Fy}} \qquad t = \frac{b}{0.56 \sqrt{\frac{E}{Fy}}}$$

$$t = \frac{0.5 \cdot (250 - 6.3)}{0.56 \sqrt{\frac{20500}{25}}} = 7.59mm$$

Adotar Enrijecedor #7,94mm distantes 350mm

$$V_{Rd} = \frac{0,60.55.0,63.25}{1.1} = 472,5 \text{ kN} > 438,8 \text{ OK!}$$

VERIFICAÇÃO AO MOMENTO FLETOR

Verificação Flambagem Lateral com Torção(FLT)

$$\frac{Lb}{ry} = \frac{250}{5,53} = 45,20$$
 $\lambda_p = 1,76 \sqrt{\frac{E}{F_y}} = 1,76 \sqrt{\frac{20500}{25}} = 50,39$

Verificação Flambagem Local da Mesa (FLM)

$$\lambda = \frac{b_f}{2t_f} = \frac{250}{2.9,5} = 13,15 \qquad \lambda_p = 0.38 \sqrt{\frac{E}{F_y}} \rightarrow 0.38 \sqrt{\frac{20500}{25}} = 10,88 \qquad \begin{array}{c} \text{6) Para perfis laminados: } M_{\rm cr} = \frac{0.99 \, E}{\lambda^2} W_{\rm c}, \ \lambda_{\rm r} = 0.83 \sqrt{\frac{E}{(f_{\rm y} - \sigma_{\rm r})}} \\ \text{Para perfis soldados: } M_{\rm cr} = \frac{0.90 \, E \, k_{\rm c}}{\lambda^2} W_{\rm c}, \ \lambda_{\rm r} = 0.95 \sqrt{\frac{E}{(f_{\rm y} - \sigma_{\rm r})/k_{\rm c}}} \\ \lambda_r = 0.95 \sqrt{\frac{20500}{(25 - 0.3.25)/0.4356}} = 21,45 \end{array}$$

6) Para perfis laminados:
$$M_{\rm cr} = \frac{0.69\,E}{\lambda^2}W_{\rm c}$$
, $\lambda_{\rm r} = 0.83\sqrt{\frac{E}{(f_{\rm y}-\sigma_{\rm r})}}$

Para perfis soldados: $M_{\rm cr} = \frac{0.90\,E\,k_{\rm c}}{\lambda^2}W_{\rm c}$, $\lambda_{\rm r} = 0.95\sqrt{\frac{E}{(f_{\rm y}-\sigma_{\rm r})/k_{\rm c}}}$

$$k_{\rm c} = \frac{4}{\sqrt{h/t_{\rm w}}} \,, \, {\rm sendo} \quad 0.35 \le k_{\rm c} \le 0.76$$

$$k_c = \frac{4}{\sqrt{\frac{h}{t_w}}} \rightarrow k_c = \frac{4}{\sqrt{\frac{53,1}{0,63}}} = 0,4356$$

Verificação Flambagem Local da Alma (FLA)

$$\lambda = \frac{h}{t_w} = \frac{53,1}{0,63} = 84,28$$

$$\lambda_p = 3,76 \sqrt{\frac{E}{F_y}} \rightarrow 3,76 \sqrt{\frac{20500}{25}} = 107,65$$

SEÇÃO SEMI-COMPACTA AO FLM

$$\mathrm{b)} \quad M_{\mathrm{Rd}} = \frac{1}{\gamma_{\mathrm{al}}} \Bigg[M_{\mathrm{p}\ell} - (M_{\mathrm{p}\ell} - M_{\mathrm{r}}) \frac{\lambda - \lambda_{\mathrm{p}}}{\lambda_{\mathrm{r}} - \lambda_{\mathrm{p}}} \Bigg], \; \mathrm{para} \; \lambda_{\mathrm{p}} < \lambda \leq \lambda_{\mathrm{r}}$$

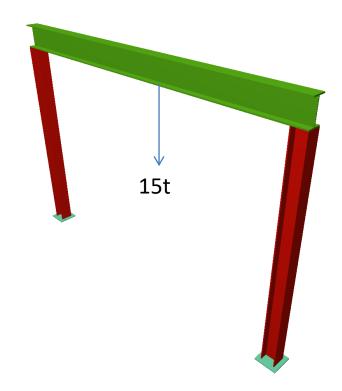
$$M_{Rd,FLM = \frac{1}{1,1}} \cdot \left(1728.25 - (1728.25 - (0,7.25.1547)) \cdot \frac{13,15 - 10,88}{21,45 - 10,88}\right) = 36124 \ kN.cm > 21864 \ kN.cm - OK!$$

Esforços Combinados

A norma exige que após a verificação dos esforços isolados, façamos a verificação dos perfis sujeitos a esforços combinados

5.5.1 Barras submetidas a momentos fletores, força axial e forças cortantes

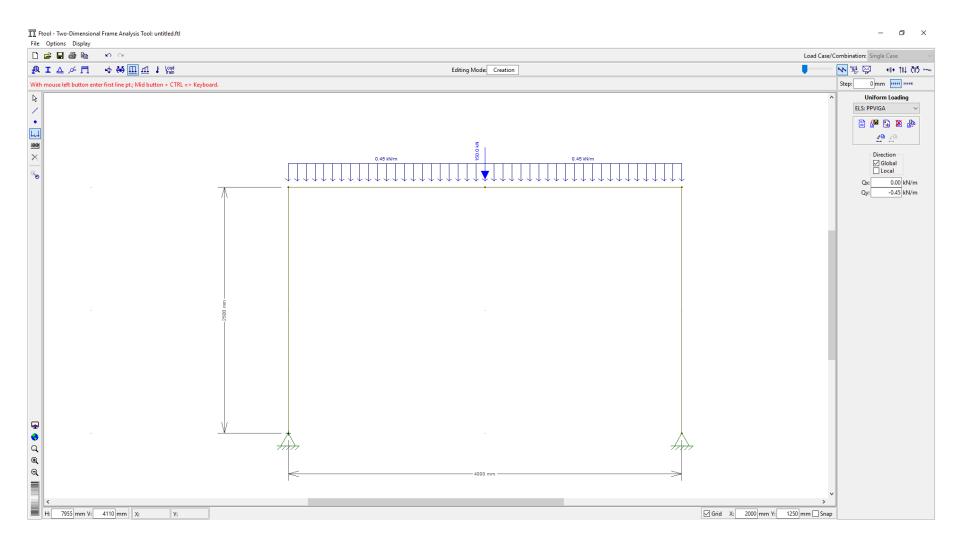
5.5.1.1 Em 5.5.1.2 é apresentada a condição a ser atendida pelas barras submetidas aos efeitos combinados de força axial e momento fletor, carregadas de forma que não ocorra torção. Em 5.5.1.3 é apresentada a condição a ser atendida por essas barras para o efeito das forças cortantes.


a) para
$$\frac{N_{\rm Sd}}{N_{\rm Rd}} \ge 0.2$$
 b) para $\frac{N_{\rm Sd}}{N_{\rm Rd}} < 0.2$
$$\frac{N_{\rm Sd}}{N_{\rm Rd}} + \frac{8}{9} \left(\frac{M_{\rm x,Sd}}{M_{\rm x,Rd}} + \frac{M_{\rm y,Sd}}{M_{\rm y,Rd}} \right) \le 1.0$$

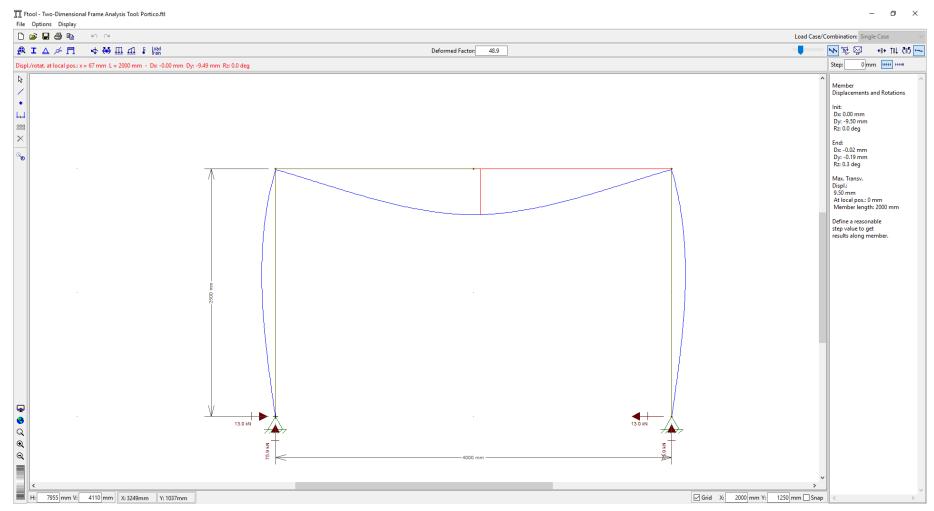
$$\frac{N_{\rm Sd}}{2 \, N_{\rm Rd}} + \left(\frac{M_{\rm x,Sd}}{M_{\rm x,Rd}} + \frac{M_{\rm y,Sd}}{M_{\rm y,Rd}} \right) \le 1.0$$

Exercício Proposto 1

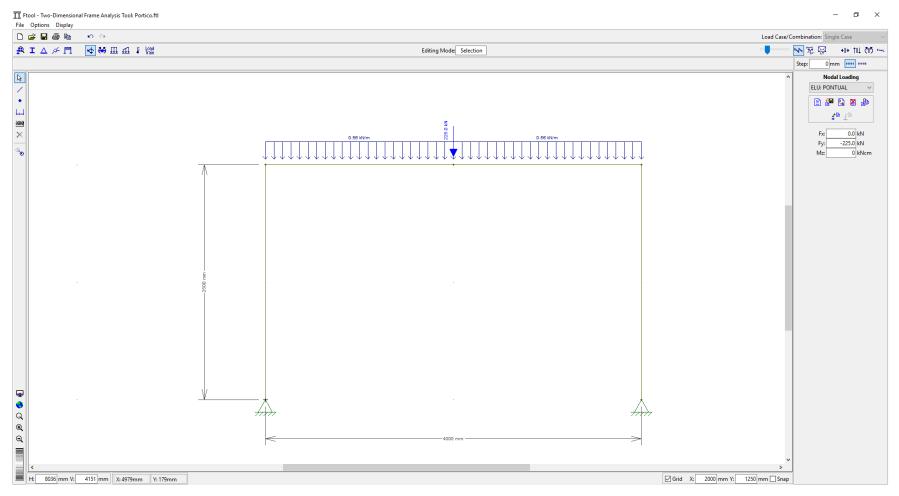
O pórtico da figura deve receber uma carga pontual de 15t no centro da viga. Admitindo que a flecha máxima admissível para este equipamento seja 15mm, determine se o pórtico está aprovado.


Dados: Viga = W250X44,8, Pilares = W150X37,1 – ASTM A572GR50

Considerar a base articulada. Altura 2,5m, vão livre: 4m

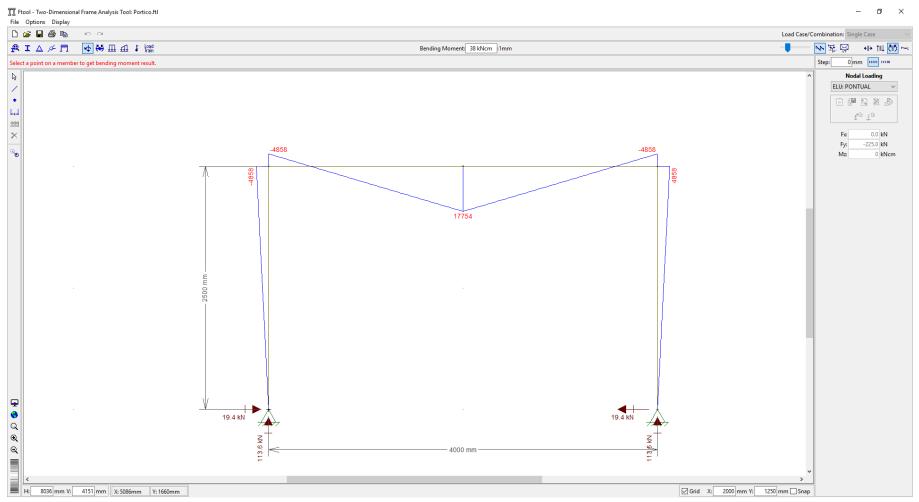

Curso de Projeto e Cálculo de Estruturas metálicas

Passo 1: Lançar no ftool sem majoração para cálculo de ELS

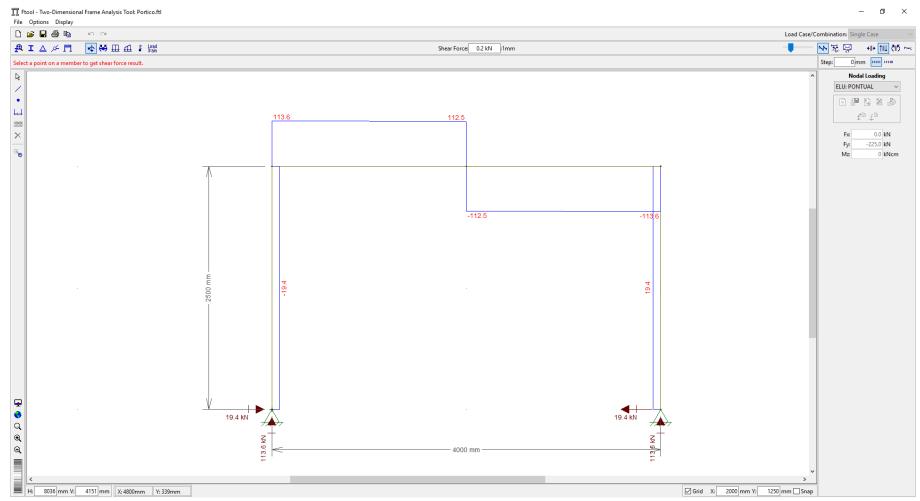

Curso de Projeto e Cálculo de Estruturas metálicas

Passo 1: Lançar no ftool sem majoração para cálculo de ELS

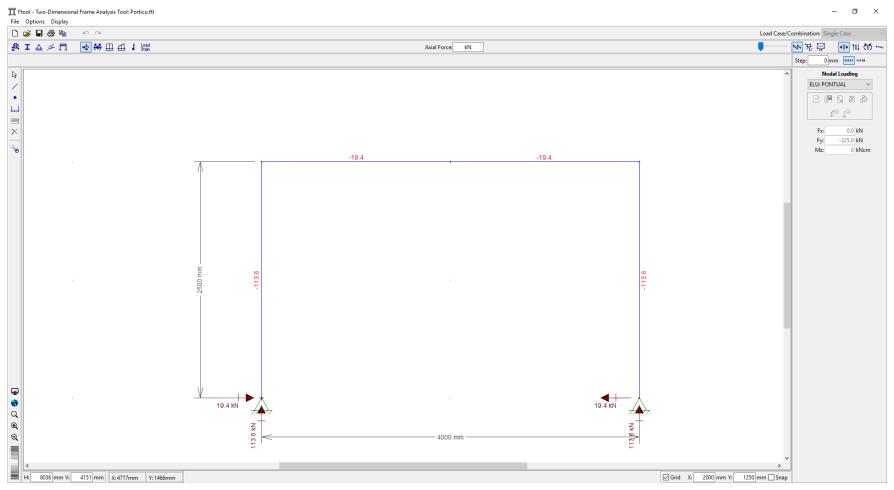
Flecha na viga: 9,50mm < 15mm OK


Passo 2: Lançar no ftool com majoração para cálculo de ELU

PP da viga: = $1,25 \times 0,448 = 0,56 \text{ kN/m}$


 $SC = 1.5 \times 150 = 225 \text{ kN pontual}$

Passo 2: Lançar no ftool com majoração para cálculo de ELU


Momento Fletor máximo na viga: 17754 kN.cm Momento Fletor Máximo no pilar: 4858 kN.cm

Passo 2: Lançar no ftool com majoração para cálculo de ELU

Cortante máxima na viga: 113,6 kN Cortante Máxima no Pilar: 19,4 kN

Passo 2: Lançar no ftool com majoração para cálculo de ELU

Axial na viga: 19,4 kN COMPRESSÃO Axial no Pilar: 113,6 kN COMPRESSÃO

TABELA DE BITOLAS

		d mm		ESPESSURA			1	4 6	EIXO X - X				EIXO Y - Y						ESBELTEZ				
BITOLA	Massa Linear		b,	t, mm	t, mm	h	ď'	Área	T,	W.	r,	Z,	Ų	W,	F,	Z,	T,	1	MESA-λ, ALMA-λ.		C.	u	BITOLA
mm x kg/m	kg/m		mm			mm	mm	cm²	cm*	cm³	cm	cm³	cm*	cm³	cm	cm³	cm	cm*	b, /2t,	d'/t_	cm*	m²/m	in x lb/ft
W 150 x 13,0	13,0	148	100	4,3	4,9	138	118	16,6	635	85,8	6,18	96,4	82	16,4	2,22	25,5	2,60	1,72	10,20	27,49	4.181	0,67	W 6 x 8,5
W 150 x 18,0	18,0	153	102	5,8	7,1	139	119	23,4	939	122,8	6,34	139,4	126	24,7	2,32	38,5	2,69	4,34	7,18	20,48	6.683	0,69	W 6 x 12
W 150 x 22,5 (H)	22,5	152	152	5,8	6,6	139	119	29,0	1229	161,7	6,51	179,6	387	50,9	3,65	77,9	4,10	4,75	11,52	20,48	20.417	0,88	W 6 x 15
W 150 x 24,0	24,0	160	102	6,6	10,3	139	115	31,5	1384	173,0	6,63	197,6	183	35,9	2,41	55,8	2,73	11,08	4,95	17,48	10.206	0,69	W 6 x 16
W 150 x 29 8 (H)	29.8	157	153	66	93	138	118	38.5	1739	221.5	6.72	247.5	556	72.6	3.80	110.8	4.18	10.95	8.23	17.94	30 277	0.90	W 6 x 20
W 150 x 37,1 (H)	37,1	162	154	8,1	11,6	139	119	47,8	2244	277,0	6,85	313,5	707	91,8	3,84	140,4	4,22	20,58	6,64	14,67	39.930	0,91	W 6 x 25
W 200 x 15,0	15,0	200	100	4,3	5,2	190	170	19,4	1305	130,5	8,20	147,9	87	17,4	2,12	27,3	2,55	2,05	9,62	39,44	8.222	0,77	W8x10
W 200 x 19,3	19,3	203	102	5,8	6,5	190	170	25,1	1686	166,1	8,19	190,6	116	22,7	2,14	35,9	2,59	4,02	7,85	29,31	11.098	0,79	W 8 x 13
W 200 x 22,5	22,5	206	102	6,2	8,0	190	170	29,0	2029	197,0	8,37	225,5	142	27,9	2,22	43,9	2,63	6,18	6,38	27,42	13.868	0,79	W 8 x 15
W 200 x 26,6	26,6	207	133	5,8	8,4	190	170	34,2	2611	252,3	8,73	282,3	330	49,6	3,10	76,3	3,54	7,65	7,92	29,34	32.477	0,92	W 8 x 18
W 200 x 31,3	31,3	210	134	6,4	10,2	190	170	40,3	3168	301,7	8,86	338,6	410	61,2	3,19	94,0	3,60	12,59	6,57	26,50	40.822	0,93	W8x21
W 200 x 35,9 (H)	35,9	201	165	6,2	10,2	181	161	45,7	3437	342,0	8,67	379,2	764	92,6	4,09	141,0	4,50	14,51	8,09	25,90	69.502	1,03	W8x24
W 200 x 41,7 (H)	41,7	205	166	7,2	11,8	181	157	53,5	4114	401,4	8,77	448,6	901	108,5	4,10	165,7	4,53	23,19	7,03	21,86	83.948	1,04	W8x28
W 200 x 46,1 (H)	46,1	203	203	7,2	11,0	181	161	58,6	4543	447,6	8,81	495,3	1535	151,2	5,12	229,5	5,58	22,01	9,23	22,36	141.342	1,19	W 8 x 31
W 200 x 52,0 (H)	52,0	206	204	7,9	12,6	181	157	66,9	5298	514,4	8,90	572,5	1784	174,9	5,16	265,8	5,61	33,34	8,10	19,85	166.710	1,19	W8 x 35
HP 200 x 53,0 (H)	53,0	204	207	11,3	11,3	181	161	68,1	4977	488,0	8,55	551,3	1673	161,7	4,96	248,6	5,57	31,93	9,16	14,28	155.075	1,20	HP 8 x 36
W 200 x 59,0 (H)	59,0	210	205	9,1	14,2	182	158	76,0	6140	584,8	8,99	655,9	2041	199,1	5,18	303,0	5,64	47,69	7,22	17,32	195.418	1,20	W 8 x 40
W 200 x 71,0 (H)	71,0	216	206	10,2	17,4	181	161	91,0	7660	709,2	9,17	803,2	2537	246,3	5,28	374,5	5,70	81,66	5,92	15,80	249.976	1,22	W 8 x 48
W 200 x 86,0 (H)	86,0	222	209	13,0	20,6	181	157	110,9	9498	855,7	9,26	984,2	3139	300,4	5,32	458,7	5,77	142,19	5,07	12,06	317.844	1,23	W8x58
W 200 x 100,0 (H)*	100,0	229	210	14,5	23,7	182	158	127,1	11355	991,7	9,45	1152,2	3664	349,0	5,37	533,4	5,80	212,61	4,43	10,87	385.454	1,25	W8x67
W 250 x 17,9	17,9	251	101	4,8	5,3	240	220	23,1	2291	182,6	9,96	211,0	91	18,1	1,99	28,8	2,48	2,54	9,53	45,92	13.735	0,88	W 10 x 12
W 250 x 22,3	22,3	254	102	5,8	6,9	240	220	28,9	2939	231,4	10,09	267,7	123	24,1	2,06	38,4	2,54	4,77	7,39	37,97	18.629	0,89	W 10 x 15
W 250 x 25,3	25,3	257	102	6,1	8,4	240	220	32,6	3473	270,2	10,31	311,1	149	29,3	2,14	46,4	2,58	7,06	6,07	36,10	22.955	0,89	W 10 x 17
W 250 x 28.4	28,4	260	102	6,4	10.0	240	220	36,6	4046	311,2	10,51	357,3	178	34,8	2,20	54,9	2,62	10,34	5,10	34,38	27.636	0,90	W 10 x 19
W 250 x 32.7	32,7	258	146	6,1	9,1	240	220	42,1	4937	382,7	10,83	428,5	473	64,8	3,35	99,7	3,86	10,44	8,02	36,03	73.104	1,07	W 10 x 22
W 250 v 38 5	38.5	262	147	6.6	11.2	240	220	49.6	6057	462.4	11 05	517.8	594	80.8	3.46	124 1	3 93	17 63	6.56	33.27	93.242	1.08	W 10 x 26
W 250 x 44,8	44,8	266	148	7,6	13,0	240	220	57,6	7158	538,2	11,15	606,3	704	95,1	3,50	146,4	3,96	27,14	5,69	28,95	112.398	1,09	W 10 x 30
HP 250 x 62,0 (H)	62,0	246	256	10,5	10,7	225	201	79,6	8728	709,6	10,47	790,5	2995	234,0	6,13	357,8	6,89	33,46	11,96	19,10	414.130	1,47	HP 10 x 42
W 250 x 73,0 (H)	73,0	253	254	8,6	14,2	225	201	92,7	11257	889,9	11,02	983,3	3880	305,5	6,47	463,1	7,01	56,94	8,94	23,33	552.900	1,48	W 10 x 49
W 250 x 80,0 (H)	80,0	256	255	9,4	15,6	225	201	101,9	12550	980,5	11,10	1088,7	4313	338,3	6,51	513,1	7,04	75,02	8,17	21,36	622.878	1,49	W 10 x 54
HP 250 x 85,0 (H)	85,0	254	260	14,4	14,4	225	201	108,5	12280	966,9	10,64	1093,2	4225	325,0	6,24	499,6	7,00	82,07	9,03	13,97	605.403	1,50	HP 10 x 57
W 250 x 89.0 (H)	89,0	260	256	10,7	17,3	225	201	113,9	14237	1095,1	11,18	1224,4	4841	378,2	6,52	574,3	7,06	102,81	7,40	18,82	712.351	1,50	W 10 x 60
W 250 x 101.0 (H)	101,0	264	257	11,9	19,6	225	201	128,7	16352	1238,8	11,27	1395,0	5549	431,8	6,57	656,3	7,10	147,70	6,56	16,87	828.031	1,51	W 10 x 68
W 250 x 115.0 (H)	115,0	269	259	13,5	22,1	225	201	146,1	18920	1406,7	11,38	1597,4	6405	494,6	6,62	752,7	7,16	212,00	5,86	14,87	975.265	1,53	W 10 x 77
W250 x 131,0 (H)*	131,0	275	261	15,4	25,1	225	193	167,8	22243	1617,7	11,51	1855,6	7448	570,7	6,66	870,7	7,21	321,06	5,20	12,52	1.161.225	1,54	W 10 x 88
W250 x 149,0 (H)*	149,0	282	263	17,3	28,4	225	193	190,5	26027	1845,9	11,69	2137,5	8624	655,8	6,73	1001,7	7,27	462,06	4,63	11,17	1.384.436	1,55	W 10 x 100
W250 x 167,0 (H)*	167.0	289	265	19,2	31,8	225	193	214,0	30110	2083,7	11,86	2435,3	9880	745.7	6,79	1140,2	7,33	644,95	4,17	10.07	1.631.156	1,57	W 10 x 112

PERFIL W150X37,1 ASTM A572GR50

VERIFICAÇÃO À COMPRESSÃO SIMPLES

Verificação da Esbeltez:

$$\lambda_x = \frac{K_x \cdot L_x}{r_x}$$
 $\lambda_x = \frac{1,0.250}{6,85} = 36,49 < 200 \ OK$

$$\lambda_y = \frac{K_y \cdot L_y}{r_y}$$
 $\lambda_x = \frac{1,0.250}{3,84} = 65,10 < 200 \ OK$

Calcular fator de redução para flambagem local Q:

Esbeltez da alma:

$$\frac{b}{t} = \frac{d'}{tw} = 14,67$$
 $\frac{b}{t} lim = 1,49.$ $\sqrt{\frac{E}{F_y}}$ $\frac{b}{t} lim = 1,49.$ $\sqrt{\frac{20500}{34,5}} = 36,32$

Qa = 1,00

Esbeltez da mesa:

$$\frac{b}{t} = \frac{(\frac{bf}{2})}{tf} = 6,64 \qquad \frac{b}{t} \lim = 0,56. \sqrt{\frac{E}{F_y}} \qquad \frac{b}{t} \lim = 0,56. \sqrt{\frac{20500}{34,5}} = 13,65$$

$$Qs = 1,00$$

$$Q = Qa. Qs = 1,00$$

Calcular fator de redução X para flambagem Global:

$$N_{ex} = \frac{\pi^2. E. Ix}{(kx. Lx)^2} = \frac{\pi^2. 20500. 2244}{(1.0.250)^2} = 7264,35kN$$

$$N_{ey} = \frac{\pi^2. E. Iy}{(ky. Ly)^2} = \frac{\pi^2. 20500.707}{(1,0.250)^2} = 2288,72kN$$

$$r_0 = \sqrt{r_x^2 + r_y^2 + x^2 + y^2} = \sqrt{6,85^2 + 3,84^2} = 7,85cm$$

$$N_{Ez} = \frac{\frac{\pi^2.E.C_w}{(K_zL_z)^2} + G.I_t}{(r_0)^2} = \frac{\frac{\pi^2.20500.39930}{(1,0.250)^2} + 7700.20,58}{(7,85)^2} = 4669,21 \, kN$$

$$\lambda_0 = \sqrt{\frac{Q.Ag.Fy}{Ne}} = \sqrt{\frac{1.47,8.34,5}{2288,72}} = 0.85$$

5.3.3 Fator de redução χ

5.3.3.1 O fator de redução associado à resistência à compressão, χ, é dado por:

- para
$$\lambda_0 \le 1.5$$
: $\chi = 0.658^{\lambda_0^2}$

- para
$$\lambda_0 > 1.5$$
: $\chi = \frac{0.877}{\lambda_0^2}$

$$\chi = 0.658^{0.85^2} = 0.739$$

$$N_{c,Rd} = \frac{\chi.\,Q.\,A_g.\,F_y}{1,1} = \frac{0,739.\,1.\,47,8.34,5}{1,1} = 1107,89\,kN < 113,6\,OK$$

VERIFICAÇÃO À FORÇA CORTANTE

Para perfis I, H e U fletidos em relação ao eixo de maior inércia

Passo 01: Comparar esbeltez da alma com dois limites (inferior e superior)

$$\lambda = \frac{h}{tw}$$

$$V_{Rd} = \frac{0,60.\,\text{Aw. Fy}}{1,1}$$

$$\lambda_p = 1,10. \sqrt{\frac{k_{v.} \cdot E}{F_y}}$$

$$V_{Rd} = \frac{\lambda_p}{\lambda} \cdot \frac{0,60. \text{ Aw. Fy}}{1,1}$$

$$\lambda_r = 1,37. \sqrt{\frac{k_{v.} \cdot E}{F_y}}$$

$$V_{Rd} = \frac{0,60. \text{ Aw. Fy}}{1,1} \qquad \lambda_p = 1,10. \sqrt{\frac{k_{v.} E}{F_y}} \qquad V_{Rd} = \frac{\lambda_p}{\lambda}. \frac{0,60. \text{ Aw. Fy}}{1,1} \qquad \lambda_r = 1,37. \sqrt{\frac{k_{v.} E}{F_y}} \qquad V_{Rd} = 1,24. \left(\frac{\lambda_p}{\lambda}\right)^2. \frac{0,60. \text{ Aw. Fy}}{1,1}$$

$$Aw = d.tw$$

$$Aw = d. tw$$

$$k_{v} = \begin{cases} 5.0 \text{ para almas sem enrijecedores transversais, para } \frac{a}{h} > 3 \text{ ou para } \frac{a}{h} > \left[\frac{260}{(h/t_{w})}\right]^{2} \\ 5 + \frac{5}{(a/h)^{2}}, \text{ para todos os outros casos} \end{cases}$$

$$\lambda = \frac{h}{tw} = \frac{162 - 2.11,6}{8,1} = 17,13$$

$$\lambda_p = 1,10. \sqrt{\frac{k_{v.E}}{F_y}} = 1,10. \sqrt{\frac{5.20500}{34,5}} = 59,95 > 16,14$$

$$V_{Rd} = \frac{0,60. \text{ Aw. Fy}}{1,1}$$

$$V_{Rd} = \frac{0,60.16,2.0,81.34,5}{1,1} = 246,93 \text{ kN}$$

VERIFICAÇÃO AO MOMENTO FLETOR

Verificação Flambagem Lateral com Torção(FLT)

$$\frac{Lb}{ry} = \frac{250}{3,84} = 65,10 \qquad \lambda_p = 1,76 \sqrt{\frac{E}{F_y}} = 1,76 \sqrt{\frac{20500}{34,5}} = 42,90 \rightarrow calular \ \lambda r$$

$$\beta_1 = \frac{(34,5 - 0,3.34,5).277}{20500.20,58} = 0,0158$$

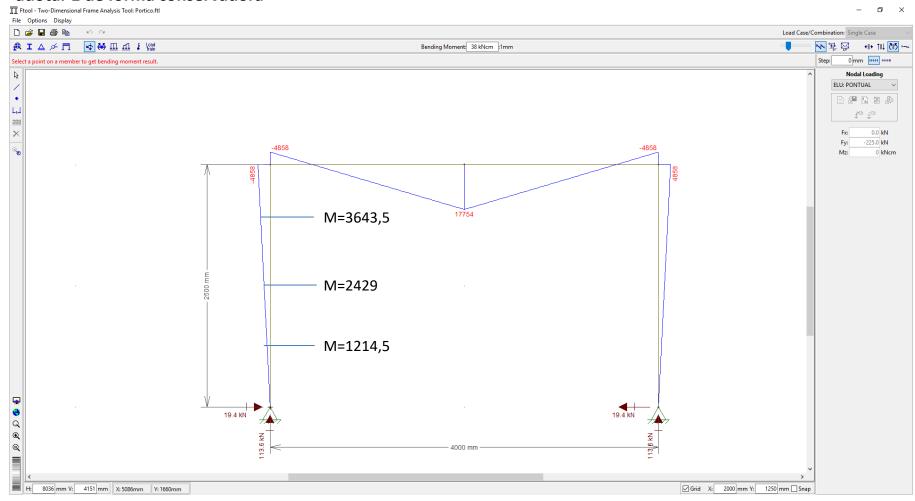
$$\lambda_r = \frac{1,38.\sqrt{707.20,58}}{3,84.20,58.0,0158}.\sqrt{1+\sqrt{1+\frac{27.39930.0,0158^2}{707}}} = 195,97$$

1)
$$\lambda_{\rm r} = \frac{1.38 \sqrt{I_{\rm y} J}}{r J_{\rm B}} \sqrt{1 + \sqrt{1 + \frac{27 C_{\rm w} \beta_1^2}{I}}}$$

As Notas relacionadas à Tabela G.1 são as seguintes:

$$M_{\rm cr} = \frac{C_{\rm b} \, \pi^2 E \, I_{\rm y}}{L_{\rm b}^2} \, \sqrt{\frac{C_{\rm w}}{I_{\rm y}}} \left(1 + 0.039 \, \frac{J \, L_{\rm b}^2}{C_{\rm w}}\right)$$

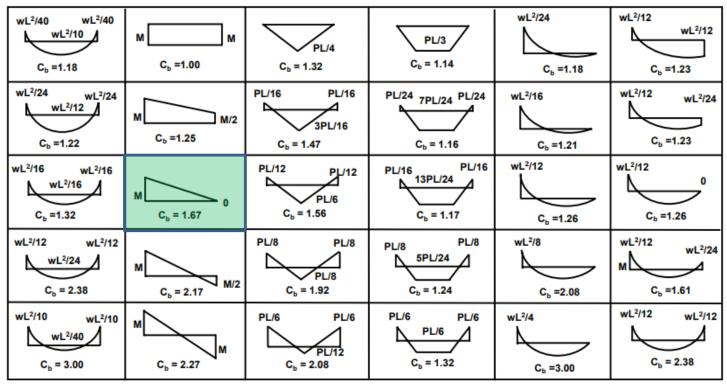
onde:


$$\beta_1 = \frac{(f_y - \sigma_r)W}{E J}$$

$$C_{
m w} = rac{I_{
m y}(d-t_{
m f})^2}{4}, \; {
m para \; seções \; I}$$

$$C_{\rm w} = \frac{t_{\rm f} \left(b_{\rm f} - 0.5 t_{\rm w}\right)^3 \left(d - t_{\rm f}\right)^2}{12} \left[\frac{3 (b_{\rm f} - 0.5 t_{\rm w}) t_{\rm f} + 2 (d - t_{\rm f}) t_{\rm w}}{6 (b_{\rm f} - 0.5 t_{\rm w}) t_{\rm f} + (d - t_{\rm f}) t_{\rm w}} \right], \text{ para seções } \cup$$

VERIFICAÇÃO AO MOMENTO FLETOR


Como o FLT deve ser calculado pela equação B, podemos calcular o Coeficiente de Distribuição de Momentos Cb, ou adotar 1 de forma conservadora

$$Cb = \frac{12,5 \cdot M_{Max}}{2,5 \cdot M_{max} + 3 \cdot M_A + 4 \cdot M_B + 3 \cdot M_B} \qquad Cb = \frac{12,5 \cdot 4858}{2,5 \cdot 4858 + 3 \cdot 1214,5 + 4 \cdot 2429 + 3 \cdot 3643,5} = 1,6^{-1}$$

C_b Values for Different Load Cases

AISC Equation F1-1

VERIFICAÇÃO AO MOMENTO FLETOR

Mrd,FLT é obtido pela equação B

a)
$$M_{\mathrm{Rd}} = \frac{M_{\mathrm{p}\ell}}{\gamma_{\mathrm{a}1}}$$
 , para $\lambda \leq \lambda_{\mathrm{p}}$

$$\mathrm{b)} \quad M_{\mathrm{Rd}} = \frac{C_{\mathrm{b}}}{\gamma_{\mathrm{al}}} \Bigg[M_{\mathrm{p}\ell} - (M_{\mathrm{p}\ell} - M_{\mathrm{r}}) \frac{\lambda - \lambda_{\mathrm{p}}}{\lambda_{\mathrm{r}} - \lambda_{\mathrm{p}}} \Bigg] \leq \frac{M_{\mathrm{p}\ell}}{\gamma_{\mathrm{al}}}, \; \mathrm{para} \; \lambda_{\mathrm{p}} < \lambda \leq \lambda_{\mathrm{r}}$$

c)
$$M_{\rm Rd} = \frac{M_{\rm cr}}{\gamma_{\rm al}} \le \frac{M_{\rm p\ell}}{\gamma_{\rm al}}$$
, para $\lambda > \lambda_{\rm r}$

$$M_{Rd,FLT = \frac{1,67}{1,1}} \left(313,5.34,5 - (313,5.34,5 - (0,7.34,5.277)) \cdot \frac{65,10 - 42,90}{195,97 - 42,90}\right) = 15512 \ kN.cm$$

Verificação Flambagem local da Mesa (FLM)

$$\frac{b}{t} = \frac{bf}{2tf} = 6,64$$
 $\lambda_p = 0.38 \sqrt{\frac{E}{F_y}} = 0.38 \sqrt{\frac{20500}{34,5}} = 9,26 \rightarrow calcular \ pela \ equação \ a)$

Verificação Flambagem Local da Alma (FLA)

$$\frac{h}{tw} = \frac{d'}{tw} = 14,67$$
 $\lambda_p = 3,76 \sqrt{\frac{E}{F_y}} = 3,76 \sqrt{\frac{20500}{34,5}} = 91,62 \rightarrow calcular \ pela \ equação \ a)$

$$M_{Rd,FLM} = \frac{M_{pl}}{1.1} = \frac{Z_x \cdot F_y}{1.1} = \frac{313,5 \cdot 34,5}{1.1} = 9832,50 \text{ kN. cm}$$

VERIFICAÇÃO QUANTO À COMBINAÇÃO DE ESFORÇOS

a) para
$$\frac{N_{\rm Sd}}{N_{\rm Rd}} \ge 0.2$$
 b) para $\frac{N_{\rm Sd}}{N_{\rm Rd}} < 0.2$

b) para
$$\frac{N_{\rm Sd}}{N_{\rm Rd}}$$
 < 0,2

$$\frac{N_{\text{Sd}}}{N_{\text{Rd}}} + \frac{8}{9} \left(\frac{M_{\text{x,Sd}}}{M_{\text{x,Rd}}} + \frac{M_{\text{y,Sd}}}{M_{\text{y,Rd}}} \right) \le 1,0 \qquad \frac{N_{\text{Sd}}}{2 N_{\text{Rd}}} + \left(\frac{M_{\text{x,Sd}}}{M_{\text{x,Rd}}} + \frac{M_{\text{y,Sd}}}{M_{\text{y,Rd}}} \right) \le 1,0$$

$$\frac{N_{\text{Sd}}}{2 N_{\text{Rd}}} + \left(\frac{M_{\text{x,Sd}}}{M_{\text{x,Rd}}} + \frac{M_{\text{y,Sd}}}{M_{\text{y,Rd}}}\right) \le 1,0$$

$$\frac{N_{Sd}}{N_{Rd}} = \frac{113,6}{1107,89} = 0,10 < 0,20$$

$$\frac{113,6}{2.1107,89} + \left(\frac{4858}{9832,5}\right) = 0,55 < 1 PERFIL APROVADO$$

PERFIL W250X44,8 ASTM A572GR50

VERIFICAÇÃO À COMPRESSÃO SIMPLES

Verificação da Esbeltez:

$$\lambda_x = \frac{K_x \cdot L_x}{r_x}$$
 $\lambda_x = \frac{1,0.400}{11,15} = 35,87 < 200 \ OK$

$$\lambda_y = \frac{K_y \cdot L_y}{r_y}$$
 $\lambda_x = \frac{1,0.400}{3,50} = 114,28 < 200 \ OK$

Calcular fator de redução para flambagem local Q:

Esbeltez da alma:

$$\frac{b}{t} = \frac{d'}{tw} = 28,95$$
 $\frac{b}{t} lim = 1,49.$ $\sqrt{\frac{E}{F_y}}$ $\frac{b}{t} lim = 1,49.$ $\sqrt{\frac{20500}{34,5}} = 36,32$

Qa = 1,00

Esbeltez da mesa:

$$\frac{b}{t} = \frac{(\frac{bf}{2})}{tf} = 5,69 \qquad \frac{b}{t} \lim = 0,56. \sqrt{\frac{E}{F_y}} \qquad \frac{b}{t} \lim = 0,56. \sqrt{\frac{20500}{34,5}} = 13,65$$

$$Qs = 1,00$$

$$Q = Qa. Qs = 1,00$$

Calcular fator de redução X para flambagem Global:

$$N_{ex} = \frac{\pi^2 \cdot E \cdot Ix}{(kx \cdot Lx)^2} = \frac{\pi^2 \cdot 20500 \cdot 7158}{(1,0 \cdot 400)^2} = 9052kN$$

$$N_{ey} = \frac{\pi^2. E. Iy}{(ky. Ly)^2} = \frac{\pi^2. 20500.704}{(1,0.400)^2} = 890,24kN$$

$$r_0 = \sqrt{r_x^2 + r_y^2 + x^2 + y^2} = \sqrt{11,15^2 + 3,5^2} = 11,69cm$$

$$N_{Ez} = \frac{\frac{\pi^2.E.C_w}{(K_z L_z)^2} + G.I_t}{(r_0)^2} = \frac{\frac{\pi^2.20500.112398}{(1,0.400)^2} + 7700.27,14}{(11,69)^2} = 2569,29 \, kN$$

$$\lambda_0 = \sqrt{\frac{Q.Ag.Fy}{Ne}} = \sqrt{\frac{1.57,6.34,5}{890,24}} = 1,49$$

5.3.3 Fator de redução χ

5.3.3.1 O fator de redução associado à resistência à compressão, χ, é dado por:

- para
$$\lambda_0 \le 1.5$$
: $\chi = 0.658^{\lambda_0^2}$

- para
$$\lambda_0 > 1.5$$
: $\chi = \frac{0.877}{\lambda_0^2}$

$$\chi = 0.658^{1.49^2} = 0.39$$

$$N_{c,Rd} = \frac{\chi.\,Q.\,A_g.\,F_y}{1,1} = \frac{0.39.\,1.\,57.6.34.5}{1,1} = 704.5\,kN < 19.4\,OK$$

VERIFICAÇÃO À FORÇA CORTANTE

Para perfis I, H e U fletidos em relação ao eixo de maior inércia

Passo 01: Comparar esbeltez da alma com dois limites (inferior e superior)

$$\lambda = \frac{h}{tw}$$

$$V_{Rd} = \frac{0,60.\,\text{Aw. Fy}}{1,1}$$

$$\lambda_p = 1,10. \sqrt{\frac{k_{v.} \cdot E}{F_y}}$$

$$V_{Rd} = \frac{\lambda_p}{\lambda} \cdot \frac{0,60. \,\text{Aw. Fy}}{1,1}$$

$$\lambda_r = 1,37. \sqrt{\frac{k_{v,\cdot} E}{F_y}}$$

$$V_{Rd} = \frac{0,60. \text{ Aw. Fy}}{1,1} \qquad \lambda_p = 1,10. \sqrt{\frac{k_{v.} E}{F_y}} \qquad V_{Rd} = \frac{\lambda_p}{\lambda}. \frac{0,60. \text{ Aw. Fy}}{1,1} \qquad \lambda_r = 1,37. \sqrt{\frac{k_{v.} E}{F_y}} \qquad V_{Rd} = 1,24. \left(\frac{\lambda_p}{\lambda}\right)^2. \frac{0,60. \text{ Aw. Fy}}{1,1}$$

$$Aw = d.tw$$

$$Aw = d. tw$$

$$k_{v} = \begin{cases} 5.0 \text{ para almas sem enrijecedores transversais, para } \frac{a}{h} > 3 \text{ ou para } \frac{a}{h} > \left[\frac{260}{(h/t_{w})}\right]^{2} \\ 5 + \frac{5}{(a/h)^{2}}, \text{ para todos os outros casos} \end{cases}$$

$$\lambda = \frac{h}{tw} = \frac{266 - 2.13}{7.6} = 31,57$$

$$\lambda_p = 1,10. \sqrt{\frac{k_{v.E}}{F_y}} = 1,10. \sqrt{\frac{5.20500}{34,5}} = 59,95 > 31,57$$

$$V_{Rd} = \frac{0,60.\,\text{Aw. Fy}}{1,1}$$

$$V_{Rd} = \frac{0,60.26,6.0,76.34,5}{1,1} = 380 \ kN$$

VERIFICAÇÃO AO MOMENTO FLETOR

Verificação Flambagem Lateral com Torção (FLT)

$$\frac{Lb}{ry} = \frac{400}{3.5} = 114,28 \quad \lambda_p = 1.76 \sqrt{\frac{E}{F_y}} = 1.76 \sqrt{\frac{20500}{34.5}} = 42,90 \rightarrow calular \ \lambda r$$

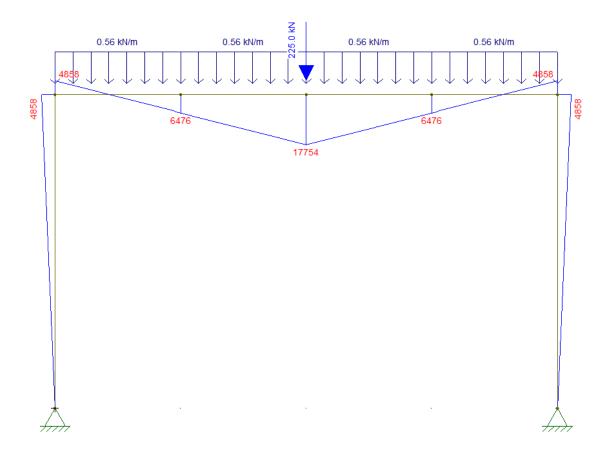
$$\beta_1 = \frac{(34,5 - 0,3.34,5).538,2}{20500.27,14} = 0,0233$$

$$\lambda_r = \frac{1,38.\sqrt{704.27,14}}{3,5.27,14.0,0233}.\sqrt{1+\sqrt{1+\frac{27.112398.0,0233^2}{704}}} = 144,92$$

1)
$$\lambda_{\rm r} = \frac{1.38 \sqrt{I_{\rm y} J}}{r_{\rm y} J \beta_{\rm 1}} \sqrt{1 + \sqrt{1 + \frac{27 C_{\rm w} \beta_{\rm 1}^2}{I_{\rm y}}}}$$

$$M_{\rm cr} = \frac{C_{\rm b} \pi^2 E I_{\rm y}}{L_{\rm b}^2} \sqrt{\frac{C_{\rm w}}{I_{\rm y}} \left(1 + 0.039 \frac{J L_{\rm b}^2}{C_{\rm w}}\right)}$$

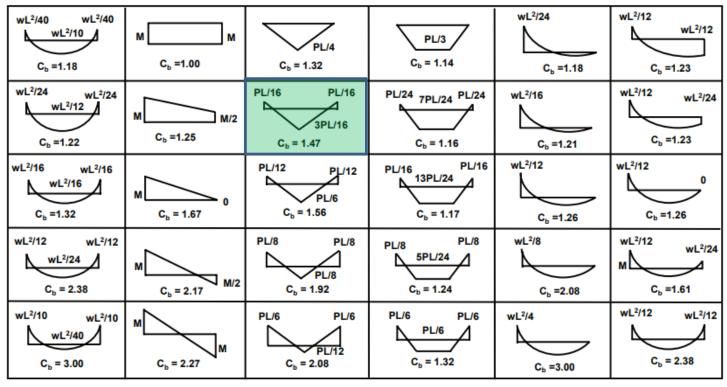
onde:


$$\beta_1 = \frac{\left(f_y - \sigma_r\right)W}{E J}$$

$$C_{
m w} = rac{I_{
m y}(d-t_{
m f})^2}{4}, \,\, {
m para \,\, seções \,\, I}$$

$$C_{\rm w} = \frac{t_{\rm f} \left(b_{\rm f} - 0.5 t_{\rm w}\right)^3 \left(d - t_{\rm f}\right)^2}{12} \left[\frac{3 (b_{\rm f} - 0.5 t_{\rm w}) t_{\rm f} + 2 (d - t_{\rm f}) t_{\rm w}}{6 (b_{\rm f} - 0.5 t_{\rm w}) t_{\rm f} + (d - t_{\rm f}) t_{\rm w}} \right], \text{ para seções U}$$

VERIFICAÇÃO AO MOMENTO FLETOR


Como o FLT deve ser calculado pela equação B, podemos calcular o Coeficiente de Distribuição de Momentos Cb, ou adotar 1 de forma conservadora

$$Cb = \frac{12,5 \cdot M_{max}}{2,5 \cdot M_{max} + 3 \cdot M_A + 4 \cdot M_B + 3 \cdot M_B} \qquad Cb = \frac{12,5 \cdot 17754}{2,5 \cdot 17754 + 3.6476 + 4.17754 + 3.6476} = 1,44$$

C_b Values for Different Load Cases

AISC Equation F1-1

VERIFICAÇÃO AO MOMENTO FLETOR

Mrd,FLT é obtido pela equação B

a)
$$M_{\mathrm{Rd}} = \frac{M_{\mathrm{p}\ell}}{\gamma_{\mathrm{a}1}}$$
 , para $\lambda \leq \lambda_{\mathrm{p}}$

$$\mathrm{b)} \quad M_{\mathrm{Rd}} = \frac{C_{\mathrm{b}}}{\gamma_{\mathrm{al}}} \Bigg[M_{\mathrm{p}\ell} - (M_{\mathrm{p}\ell} - M_{\mathrm{r}}) \frac{\lambda - \lambda_{\mathrm{p}}}{\lambda_{\mathrm{r}} - \lambda_{\mathrm{p}}} \Bigg] \leq \frac{M_{\mathrm{p}\ell}}{\gamma_{\mathrm{al}}}, \; \mathrm{para} \; \lambda_{\mathrm{p}} < \lambda \leq \lambda_{\mathrm{r}}$$

c)
$$M_{\rm Rd} = \frac{M_{\rm cr}}{\gamma_{\rm al}} \leq \frac{M_{\rm p\ell}}{\gamma_{\rm al}}$$
 , para $\lambda > \lambda_{\rm r}$

$$M_{Rd,FLT = \frac{1,44}{1,1}} \left(606,3.34,5 - (606,3.34,5 - (0,7.34,5.538,2)) \cdot \frac{114,28 - 42,90}{144,92 - 42,90}\right) = 20128,72 \ kN.cm$$

Verificação Flambagem local da Mesa (FLM)

$$\frac{b}{t} = \frac{bf}{2tf} = 5,69$$
 $\lambda_p = 0.38 \sqrt{\frac{E}{F_y}} = 0.38 \sqrt{\frac{20500}{34,5}} = 9,26 \rightarrow calcular \ pela \ equação \ a)$

Verificação Flambagem Local da Alma (FLA)

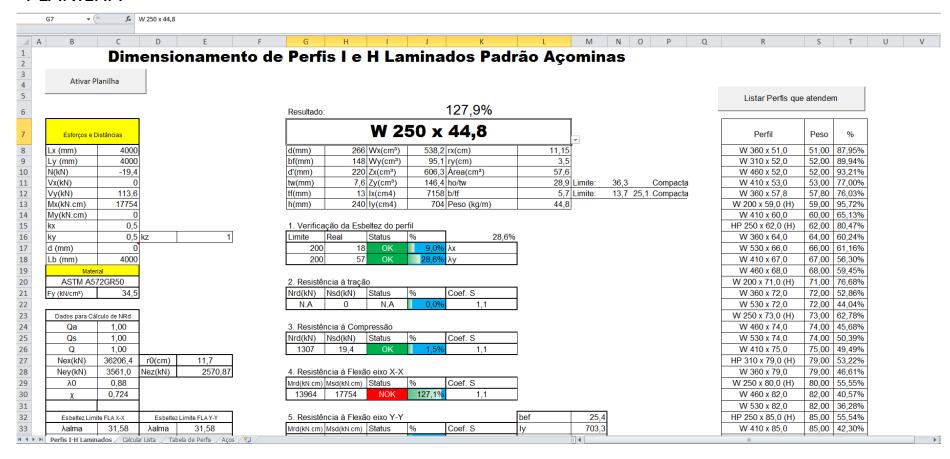
$$\frac{h}{tw} = \frac{d'}{tw} = 28,95$$
 $\lambda_p = 3,76 \sqrt{\frac{E}{F_y}} = 3,76 \sqrt{\frac{20500}{34,5}} = 91,62 \rightarrow calcular \ pela \ equação \ a)$

$$M_{Rd,FLM} = \frac{M_{pl}}{1.1} = \frac{Z_x \cdot F_y}{1.1} = \frac{606,3 \cdot 34,5}{1.1} = 20917,35 \text{ kN. cm}$$

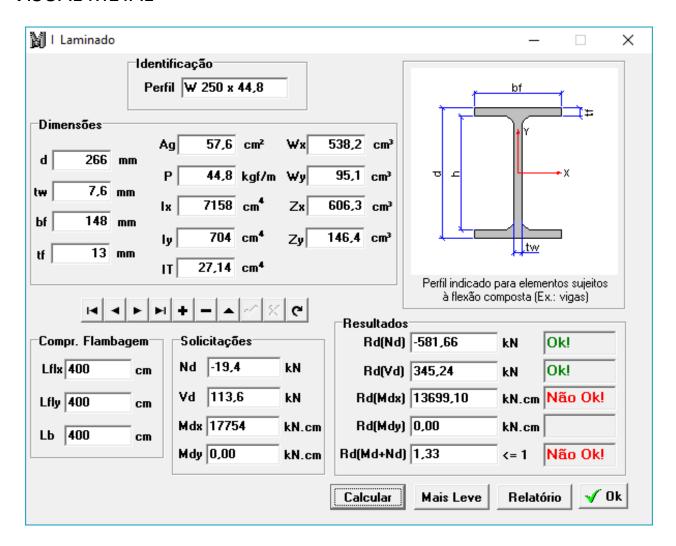
VERIFICAÇÃO QUANTO À COMBINAÇÃO DE ESFORÇOS

a) para
$$\frac{N_{\rm Sd}}{N_{\rm Rd}} \ge 0.2$$
 b) para $\frac{N_{\rm Sd}}{N_{\rm Rd}} < 0.2$

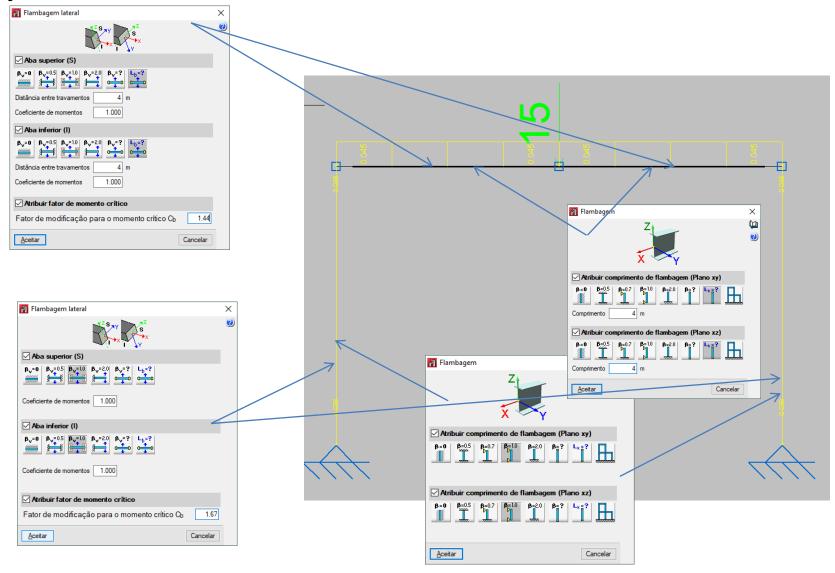
b) para
$$\frac{N_{\rm Sd}}{N_{\rm Rd}}$$
 < 0,2

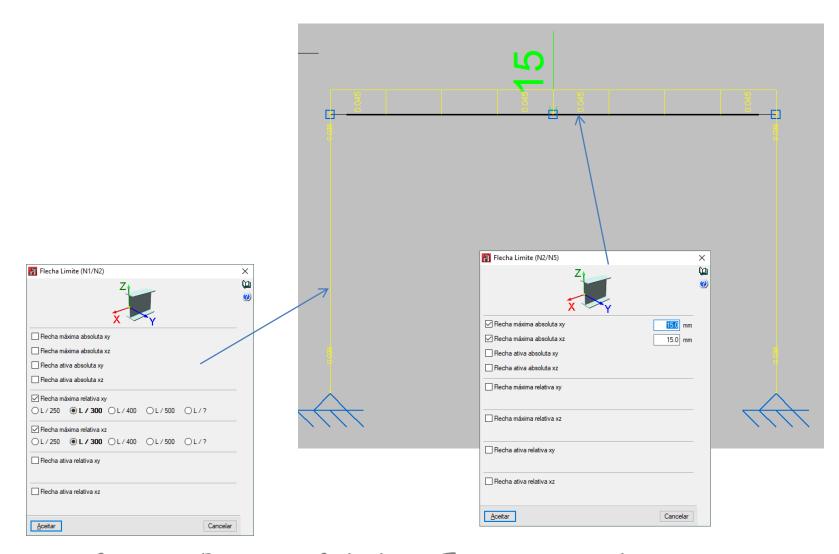

$$\frac{N_{\text{Sd}}}{N_{\text{Rd}}} + \frac{8}{9} \left(\frac{M_{\text{x,Sd}}}{M_{\text{x,Rd}}} + \frac{M_{\text{y,Sd}}}{M_{\text{y,Rd}}} \right) \le 1,0 \qquad \frac{N_{\text{Sd}}}{2 N_{\text{Rd}}} + \left(\frac{M_{\text{x,Sd}}}{M_{\text{x,Rd}}} + \frac{M_{\text{y,Sd}}}{M_{\text{y,Rd}}} \right) \le 1,0$$

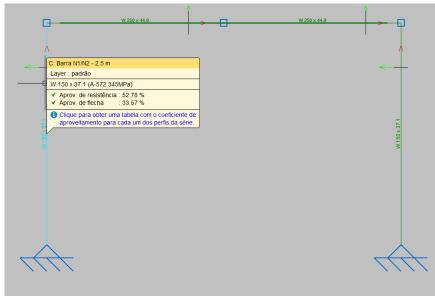
$$\frac{N_{\text{Sd}}}{2 N_{\text{Rd}}} + \left(\frac{M_{\text{x,Sd}}}{M_{\text{x,Rd}}} + \frac{M_{\text{y,Sd}}}{M_{\text{y,Rd}}}\right) \le 1,0$$


$$\frac{N_{Sd}}{N_{Rd}} = \frac{19,4}{704,5} = 0,027 < 0,20$$

$$\frac{19,4}{2.704,5} + \left(\frac{17754}{20128,72}\right) = 0.89 < 1 PERFIL APROVADO COM Cb$$

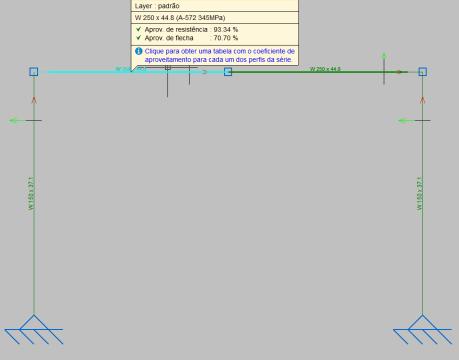

AUTOMAÇÃO DE CÁLCULO PLANILHA


AUTOMAÇÃO DE CÁLCULO VISUAL METAL

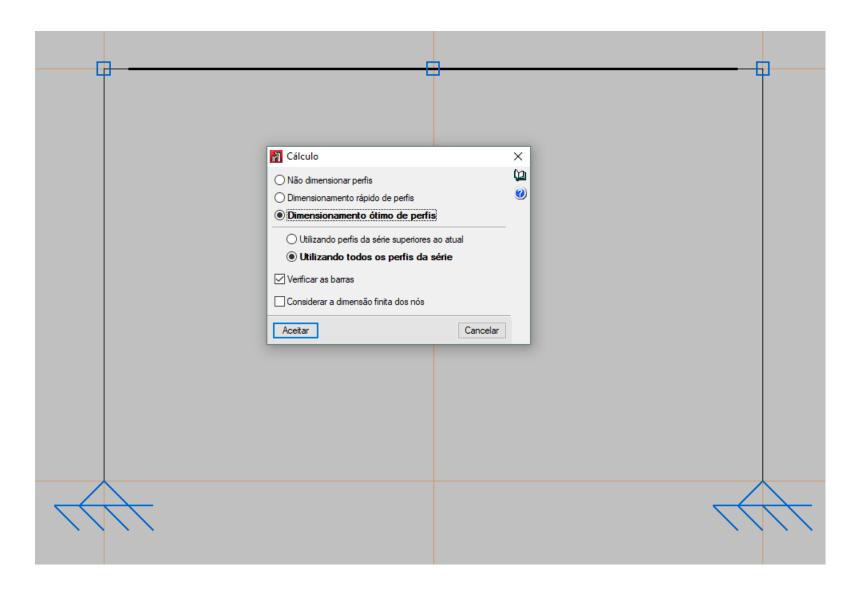

Curso de Projeto e Cálculo de Estruturas metálicas

Curso de Projeto e Cálculo de Estruturas metálicas

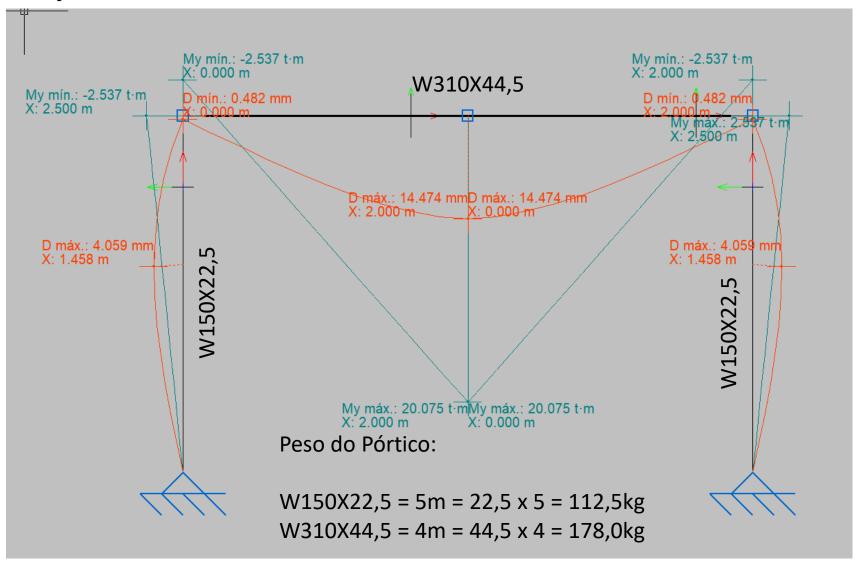
Curso de Projeto e Cálculo de Estruturas metálicas



RELATÓRIO COMPLETO NA ÁREA DO ALUNO – PÁG 37 a 95


Peso do Pórtico:

W150X37,1 = $5m = 37,1 \times 5 = 185,5 \text{kg}$ W250X44,8 = $4m = 44,8 \times 4 = 179,2 \text{kg}$


Peso Total = 364,7 kg

C: Barra N2/N5 - 2 m

Curso de Projeto e Cálculo de Estruturas metálicas

Peso Total = 290,5 kg (-20%)