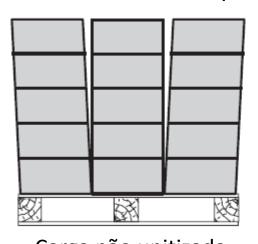
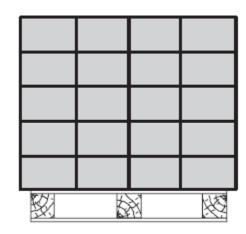

Ações e Combinações de Ações

Ações Permanentes	Ações Variáveis
Peso próprio da estrutura	Peso das unidades de carga
Peso próprio de Grades e fechamentos	☑ Carga Vertical de posicionamento
Peso de tubulações e utilidades que venham a se apoiar na estrutura	☑ Carga horizontal de posicionamento
	Ações de imperfeições (montante, contraventamento, Excentricidades, etc)
	☑ Cargas de impacto e acidentais
	✓ Cargas de Vento


Ações e Combinações de Ações

Unidades de Carga

item de armazenagem individual que pode ser colocado ou retirado de uma estrutura em apenas uma operação


Carga Unitizada sem saliências laterais

Carga não unitizada (não "strechada"/"filmada"

Carga unitizada com saliências laterais

Carga unitizada com saliências laterais

O peso nominal de uma unidade de carga é definido pelo especificador.

Para análise de peças individuais é usado 100% da carga nominal

Para análise global esse valor é ajustado, podendo chegar a 80% da carga nominal

Cargas de posicionamento

Vertical

Colocação com empilhadeiras

$$F_{Q_{pv}}=0.25.F_{Quc}$$

Colocação manual

$$F_{Q_{pv}} = F_{Q_{uc}}$$

Aplica-se no dimensionamento das longarinas e ligações de extremidade, na posição mais desfavorável ao Momento fletor e esforço cortante. Não se aplica para ELS

 $F_{O_{uc}} = Unidade de carga máxima$

Horizontal

Colocação com empilhadeiras e equipamentos

Estruturas até 3m de altura: $F_{Q_{ph}}=0.50.\,kN$ Posição mais desfavorável

Estruturas entre 3m e 6m:
$$F_{Q_{ph}} = i\pi$$

Estruturas entre 3m e 6m:
$$F_{Q_{ph}} = interpolar \ entre \ 6m \ e \ 3m \\ F_{Q_{ph}} = 0,50. \ kN \ a \ 3m$$
 Topo

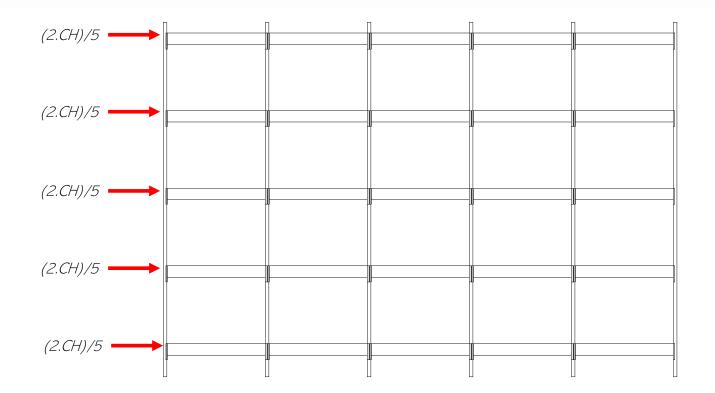
Estruturas acima de 6m

$$F_{Q_{ph}}=0.25.\,kN$$
 Topo da estrutura
$$F_{Q_{ph}}=0.50.\,kN\,a\,3m$$

Colocação manual

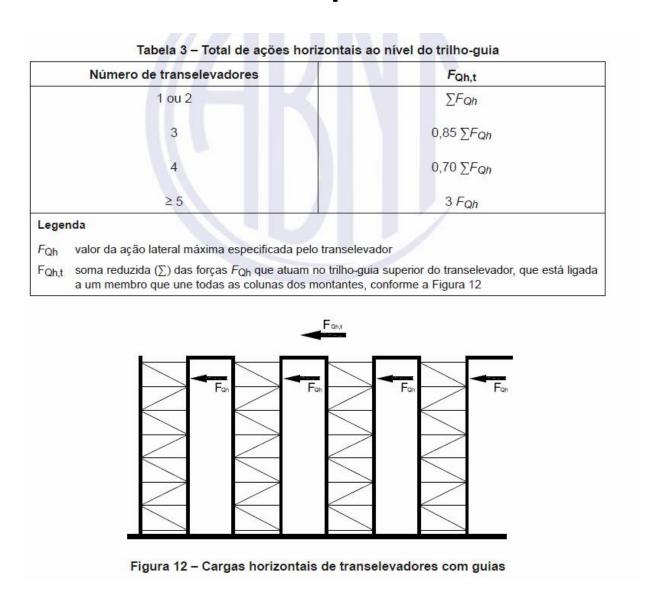
$$F_{Q_{ph}} = 0.25 \ kN$$
 no ponto mais desfavorável

Aplica-se na direção do corredor e direção das montantes, de forma independente e não simultânea


Para longarinas: Fh = 0,5. FQph, na posição mais desfavorável

Cargas de posicionamento

6.6.2.3.2 Aplicação da carga de colocação horizontal na direção paralela ao corredor


Na direção do corredor, a carga de colocação horizontal surge só nos níveis da longarina e provoca um aumento do deslocamento na direção do corredor, causado por imperfeições nos montantes.

Para facilitar a análise destes carregamentos, é permitido substituir a carga concentrada C_{hc} por uma carga total de $2*C_{hc}$ distribuída uniformemente em cima de todos os níveis de longarina.

Cargas de posicionamento horizontal devido a múltiplos transelevadores

FQh definida pelo fabricante, porém com valor mínimo de 0,25 kN

2 – Normas Utilizadas

- X ABNT NBR 15.524/07 PARTE 1 CANCELADA
- X ABNT NBR 15.524/07 PARTE 2 CANCELADA
- ✓ ABNT NBR 17.150/2024 Parte 1: Requisitos para projeto estrutural
- ☑ ABNT NBR 17.150/2024 Parte 2: Tolerâncias, deformações e folgas para projetos
- ✓ ABNT NBR14.762/10 Dimensionamento de Perfis Formados a Frio
- ☑ EN 15629- Steel static storage systems Specification of storage equipment.

Ações acidentais devido a impactos

Vertical

Colocação com empilhadeiras operadas manualmente

$$F_{Q_{av}} = 5 kN$$
 Ascendente

Com transelevadores (equipamentos automáticos)

$$F_{Q_{av}} = 0.5 . F_{Q_{uc}} \quad 0.25kN \le F_{Q_{av}} \le 5kN$$

 $F_{O_{uc}} = Unidade de carga máxima$

Horizontal

Colocação com empilhadeiras ou equipamentos não guiados

Na altura de 0,4m, na direção da montante:
$$F_{Qah}=2,5.\,kN$$
 Na altura de 0,4m, na direção do corredor: $F_{Qah}=1,25.\,kN$

Colocação com transelevadores ou equipamentos guiados

Na altura de 0,4m, na direção do corredor: $F_{Q_{ah}} = 0,50. \, kN$

Combinações de Ações (Estados Limites Últimos)

a) Apenas para as cargas variáveis mais desfavoráveis:

$$\sum \gamma_g.\,C_p + \gamma_q.\,C_V$$

b) Para ações variáveis desfavoráveis que possam ocorrer simultaneamente:

$$\sum \gamma_g.\,C_p + \sum 0.9.\,\gamma_q.\,C_V$$

c) Para cargas acidentais

$$\sum \gamma_{ga}.\,C_p + \sum \gamma_{qa}.\,C_V + \gamma_a.\,C_A$$

 $C_p = Carga\ permanente$

 $C_V = Carga Variável$

 $C_A = Carga\ Acidental$

Tabela 4 – Coeficientes de ponderação de carga γ_f

Ações	Estado-limite último	Estado-limite de serviço
Cargas permanentes γ_g		
 com efeito desfavorável 	1,25	1,0
com efeito favorável	1,0	1,0
Cargas variáveis γ _q		
Unidades de carga	1,4	1,0
Unidades de carga em sistemas operados por transelevadores	1,4 ou 1,3 ^a	1,0
Cargas de posicionamento	1,4	1,0
Outras cargas variáveis	1,5	1,0
Cargas acidentais		
γa	1,0	
γga	1,0	
γqa	1,0	

^a Aplicável a um sistema de armazenagem operado por transelevador que inclua a pesagem de todas as unidades de carga e a rejeição de todas aquelas que estejam pesando mais do que a carga de cálculo. Neste caso, o fator de carga pode ser reduzido de 1,4 para 1,3.

NOTA A incerteza estatística quanto à magnitude do peso das unidades de carga é consideravelmente menor do que a das ações variáveis convencionais na construção civil (vento, neve, carga de piso etc.). Além disso, o usuário exerce um alto nível de controle no funcionamento do sistema. Consequentemente, as unidades de carga têm um coeficiente de ponderação de carga entre o determinado para as cargas variáveis e o estabelecido para as ações permanentes. A principal incerteza no desempenho relacionado à carga de um porta-paletes está na interação com o equipamento de carregamento. Considera-se que estes efeitos são incorporados nas cargas acidentais e nas cargas de posicionamento que refletem o resultado provável de boas práticas (ver 6.3).

Combinações de Ações (Estados Limites de Serviço)

a) Apenas para as cargas variáveis mais desfavoráveis:

$$\sum \gamma_g.\,C_p + \gamma_q.\,C_V$$

b) Para ações variáveis desfavoráveis que possam ocorrer simultaneamente:

$$\sum \gamma_g.\,C_p + \sum 0.9.\,\gamma_q.\,C_V$$

 $C_p = Carga\ permanente$

 $C_V = Carga \, Variável$

 $C_A = Carga\ Acidental$

Tabela 4 – Coeficientes de ponderação de carga γ_f

Ações	Estado-limite último	Estado-limite de serviço
Cargas permanentes γ_g		
com efeito desfavorável	1,25	1,0
 com efeito favorável 	1,0	1,0
Cargas variáveis Yq		
Unidades de carga	1,4	1,0
Unidades de carga em sistemas operados por transelevadores	1,4 ou 1,3 ^a	1,0
Cargas de posicionamento	1,4	1,0
Outras cargas variáveis	1,5	1,0
Cargas acidentais		
γa	1,0	
γga	1,0	
Υqa	1,0	

^a Aplicável a um sistema de armazenagem operado por transelevador que inclua a pesagem de todas as unidades de carga e a rejeição de todas aquelas que estejam pesando mais do que a carga de cálculo. Neste caso, o fator de carga pode ser reduzido de 1,4 para 1,3.

NOTA A incerteza estatística quanto à magnitude do peso das unidades de carga é consideravelmente menor do que a das ações variáveis convencionais na construção civil (vento, neve, carga de piso etc.). Além disso, o usuário exerce um alto nível de controle no funcionamento do sistema. Consequentemente, as unidades de carga têm um coeficiente de ponderação de carga entre o determinado para as cargas variáveis e o estabelecido para as ações permanentes. A principal incerteza no desempenho relacionado à carga de um porta-paletes está na interação com o equipamento de carregamento. Considera-se que estes efeitos são incorporados nas cargas acidentais e nas cargas de posicionamento que refletem o resultado provável de boas práticas (ver 6.3).

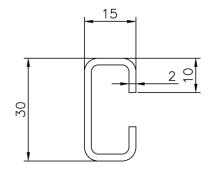
Coeficientes de ponderação do material

Tabela 5 – Coeficientes de ponderação de material γ_M

Resistência	Estado- Limite Último	Estado- Limite de Serviço
	RC2 ^a	
Resistência das seções transversais seja qual for a classe γμο	1,1 ^b	1,0
Resistência do membro à instabilidade avaliada pela verificação do membro γм1	1,1	1,0
Resistência das ligações γ _{M2}	1,25	1,0
Resistência das ligações sujeitas a testes e controle de qualidade (por exemplo, conectores da extremidade da longarina, ver o Anexo H) 7M2	1,1	1,0

Esses fatores s\u00e3o baseados na classe de confiabilidade 2 (RC2). Outras classes de confiabilidade podem ser usadas se apropriado, ver EN 1990.

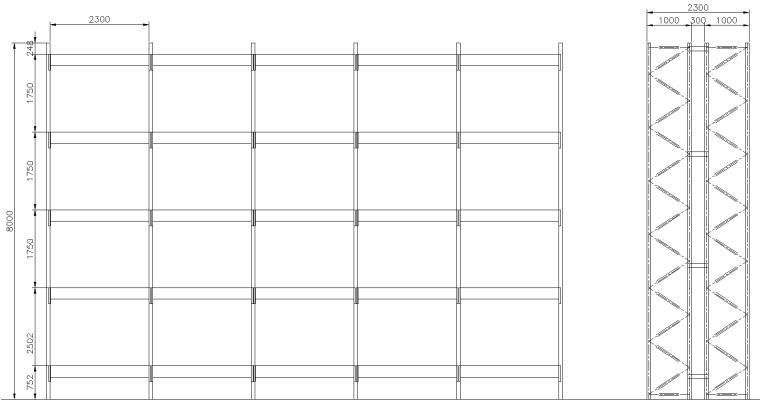
O coeficiente de ponderação de material γ_{M0} pode ser diferente do indicado na Tabela 5, sendo tomado como 1,0 para o estado limite último (ELU) mediante certificado de qualidade da matéria-prima utilizada (aço), conforme ABNT NBR 14762:2010, 4.1.1, e submissão aos ensaios para validação das propriedades mecânicas no recebimento, conforme ABNT NBR 11888:2015 Versão Corrigida:2018, 7.2.3 e ABNT NBR ISO 6892-1.


Exemplo 1: Determinar as ações e combinações de ações para ELU e ELS da estrutura porta paletes, considerando os dados abaixo

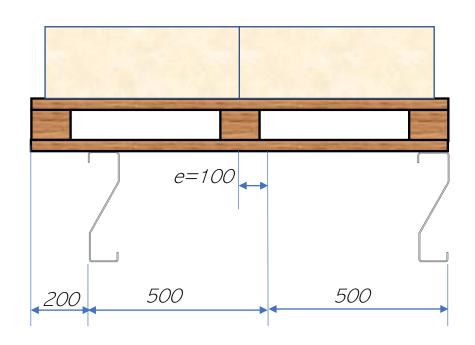
Peso máximo de uma unidade de carga: 1000 kg (10kN)

3

Coluna da montante seção Rack


A=7.79 cm²

Longarina Seção Z enrijecido A= 11,95cm²


Diagonais da montante A=1,34 cm² L-TOTAL = 16,10m por montante

Operação com empilhadeira à combustão Unidades de carga em paletes PBR 1000X1200

Eng. Felipe Jacob

Efeitos da Excentricidade no posicionamento

Se
$$\rho < 1,12$$
 então $\eta = 1,0$

Se
$$1.12 \le \rho \le 1.24$$
 então $\eta = 2 \cdot \rho - 1.24$

Se
$$\rho > 1,24$$
 então $\eta = \rho$

Número de unidades de carga por par de

longarinas: 2300/1000 = 2,3 – Arredonda-se para

baixo: 2 unidades de carga

$$P=2.10 \cdot \left(\frac{600}{1200}\right) = 10 \ kN$$
 Carga total na longarina caso a carga fosse colocada simetricamente

$$P_e=2.10$$
 . $\left(\frac{700}{1200}\right)=11,67~kN$ Carga total na longarina considerando a imprecisão de posicionamento

$$\rho = \frac{P_e}{P} = \frac{11,67}{10} = 1,167 > Maior que 1,12, menor que 1,24$$

$$n = 2.1,167 - 1,24 = 1,094$$

$$P' = \eta.P$$
 $P' = 1,094.10 = 10,94kN$

$$q = \frac{P}{L} = \frac{10}{2,30} = 4,34 \ kN/m$$
 Carga Uniformemente distribuída sem excentricidade $q = \frac{P}{L} = \frac{10,94}{2,30} = 4,75 \ kN/m$ Carga Uniformemente distribuída com excentricidade

$$q=rac{P}{L}=rac{10,94}{2,30}=4,75\ kN/m$$
 Carga Uniformemente distribuída com excentricidade

Exemplo 1

Carregamento nas longarinas:

Peso próprio da Longarina:

 $PP = 0.7850 \times A$

 $PP = 0.7850 \times 11.95 = 9.38 \text{ kg/m} (0.094 \text{ kN/m})$

Combinações para E.L.S

$$\sum \gamma_g.\,C_p + \gamma_q.\,C_V$$

 $0.0938 + 4.34 = 4.44 \, kN/m$ Sem excentricidade

Combinações para E.L.U

Para cargas de uso (ELU 1)

$$\sum \gamma_g.\,C_p + \gamma_q.\,C_V$$

1,25.0,0938 + 1,4.4,34 = 6,11 kN/m Sem Excentricidade

1,25.0,0938 + 1,4.4,75 = 6,77 kN/m Com excentricidade

Para cargas de uso + Carga Vertical de Posicionamento (ELU 2)

$$\sum \gamma_g.\,C_p + \sum 0.9.\,\gamma_q.\,C_V$$

1,25.0,0938 + 0.9.(1,4.4,34) = 5.59 kN/m

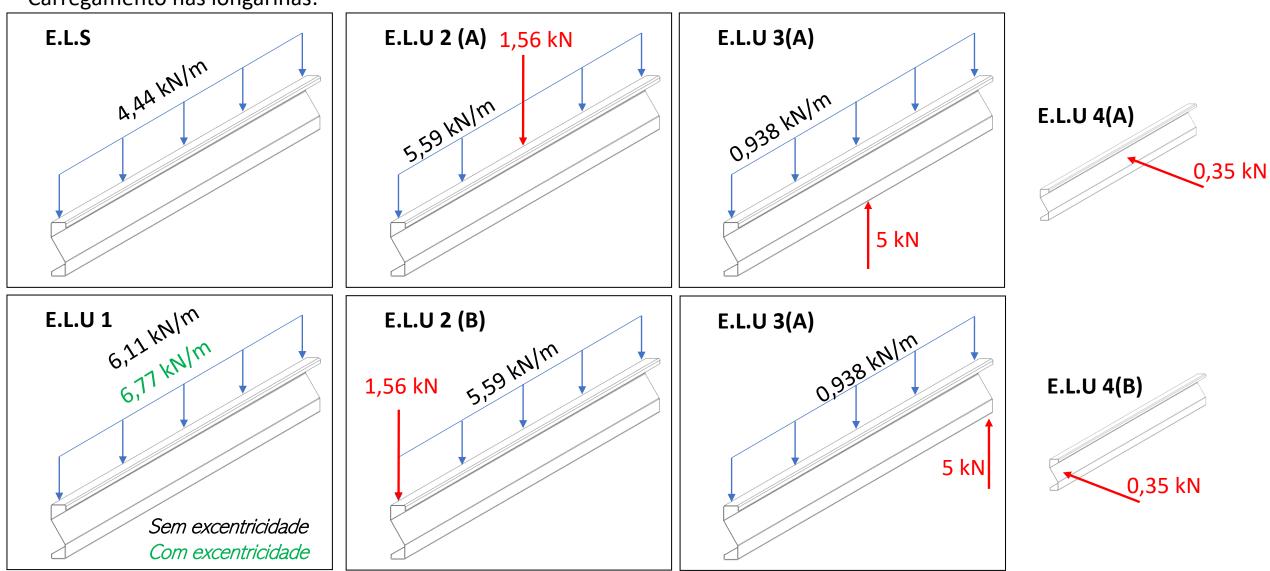
Pontual $+ 0.9.1,4.0,25.\frac{10}{2} = 1,56 \text{ kN}$

Para cargas acidentais (ELU 3)

$$\sum_{q_a} \gamma_{qa} \cdot C_p + \sum_{q_a} \gamma_{qa} \cdot C_V + \gamma_a \cdot C_A$$
1,00 \cdot 0.0938 = 0.0938kN/m

Pontual Ascendente

$$-1,00.5,00 = -5,00kN$$


Carga Horizontal de Posicionamento (ELU 4)

$$F_{Q_{ph}} = 0.50 \ kN$$

$$F_h = 1,40.0,50.0,50 kN = 0,35 kN$$

Exemplo 1

Carregamento nas longarinas:

*A carga com excentricidade será usada para dimensionamento das longarinas e conectores

Exemplo 1

Carregamentos nas montantes:

Cargas Verticais

Peso próprio da Coluna:

 $PPC = 0,7850 \times A$

 $PPC = 0.7850 \times 7.79 = 6.11 \text{ kg/m}$

Carga total por coluna: 6,11 x 8~ 49kg (0,49 kN)

Peso próprio das diagonais:

PPD = $0.7850 \times 1.34 = 1.05 \times 16.10 \sim 17 \text{kg} (0.17 \text{kN})$

Peso próprio total por coluna

 $PP = 0.49 + 0.17/2 = 0.58 \times 1.25 = 0.72 \text{ kN}$

Por simplificação essa carga será aplicada toda no topo da coluna, mas poderia ser dividida entre os níveis de longarinas

Combinações para E.L.U

Vertical (Sentido positivo para baixo)

Para cargas de uso (ELU 1)

$$P_1 = 6.11.2.30 = 14.05 \, kN$$

Para cargas de uso + Carga Vertical de Posicionamento (ELU 2)

$$P_2 = 5,59.2,30 = 12,86 \, kN$$

Cargas verticais de posicionamento não se aplicam às montantes

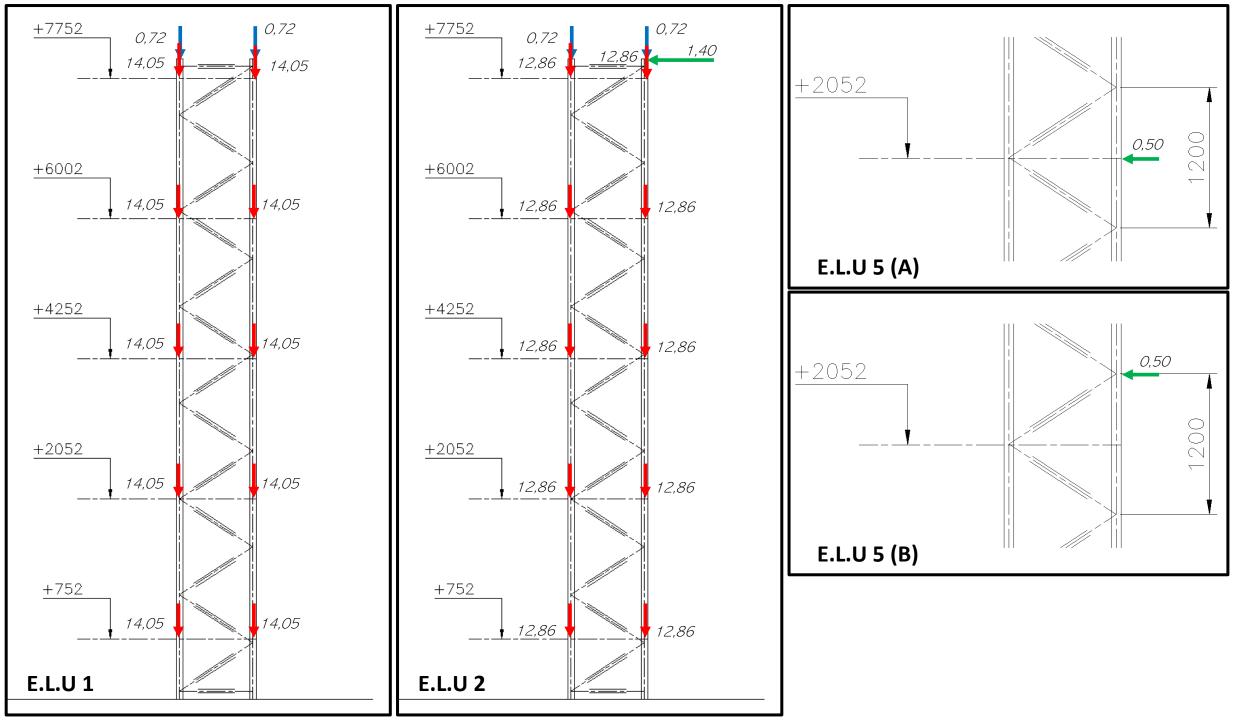
Para cargas acidentais (ELU 3)

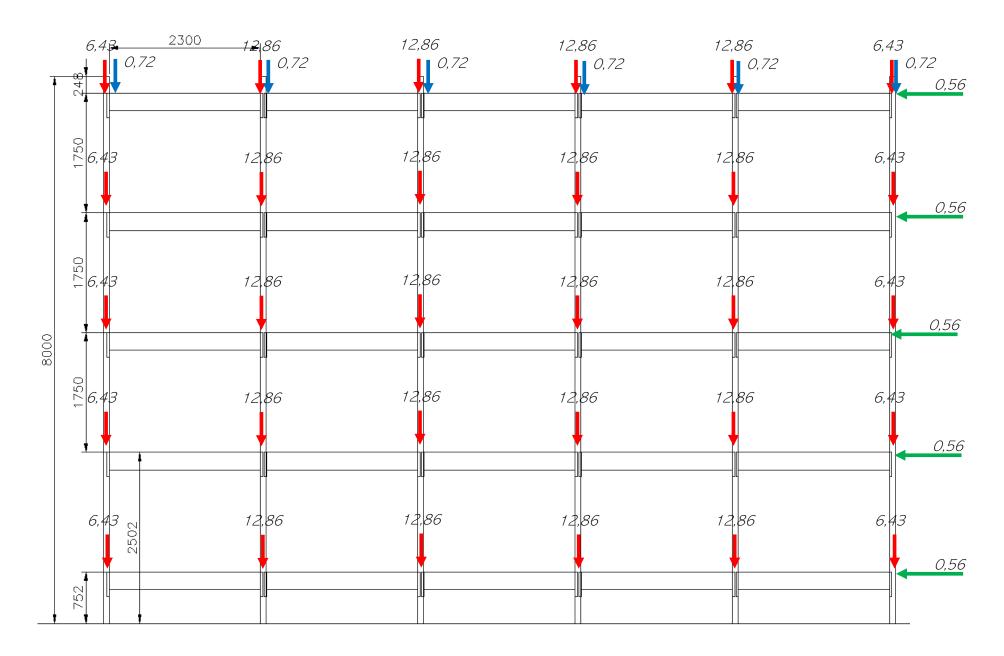
$$P_3 = (0.0938 + 4.34).2.3 = 12.14 kN$$

Horizontal

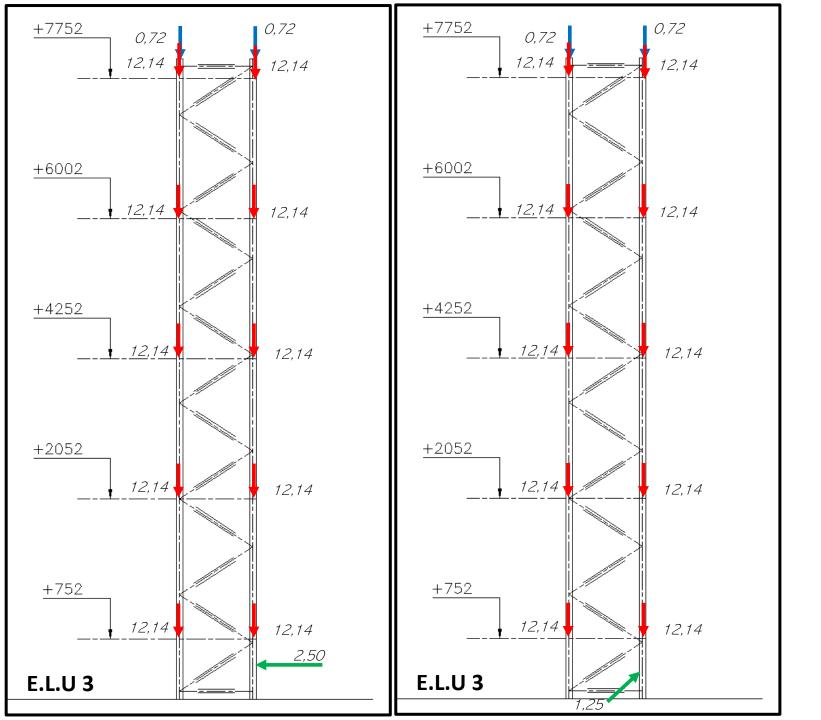
Cargas horizontais de Posicionamento (ELU 2)

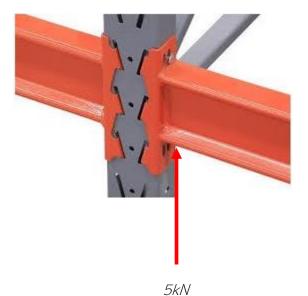
$$P_{2H}=0.9.1,40.0,1.10=1,40~kN$$
 Aplicada no topo da montante


Cargas horizontais de Posicionamento (ELU 5)

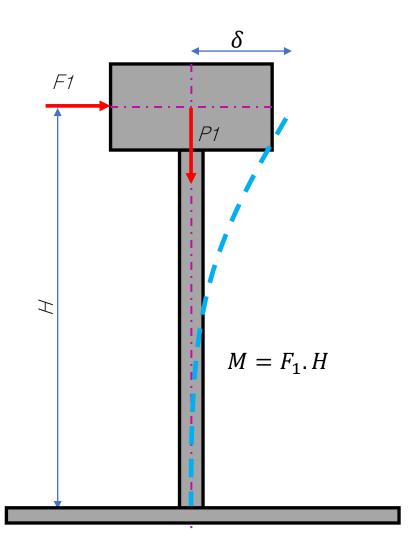

$$P_{5H}=0.5kN$$
 Aplicada entre dois nós da diagonal e no nó da diagonal

Cargas horizontais acidentais (ELU 3)

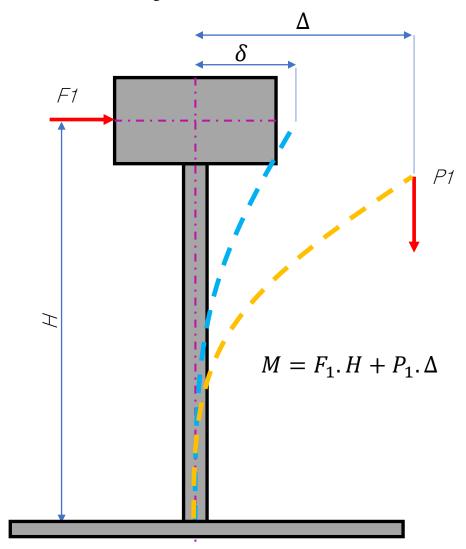

$$P_{3hc}=1,25\ kN$$
 Aplicada na direção do corredor, a 0,4m de altura $P_{3hm}=2,50\ kN$ Aplicada na direção do montante, a 0,4m de altura


As cargas acidentais horizontais podem ser transferidas para os Mike Tyson

E.L.U 2



Carga acidental ascendente para verificação do pino de segurança das longarinas


Análise linear (Primeira Ordem)

Realizada com base na geometria indeformada da estrutura

Análise não-linear (Segunda Ordem)

Realizada com base na geometria deformada da estrutura

Classificação da sensibilidade lateral da estrutura

Pequena deslocabilidade	
$S_0 = 1.1$	
$Se \frac{-}{\delta} \leq 1,1$	

Cargas oriundas das imperfeições iniciais são obtidas por:

Desaprumo inicial = H/333 ou

Carga nocional de 0,3% das cargas gravitacionais

Análise de primeira ordem desde que Nsd/NRd <0,50 (A.fy)

Média deslocabilidade

Se
$$1,1 < \frac{\Delta}{\delta} \le 1,4$$

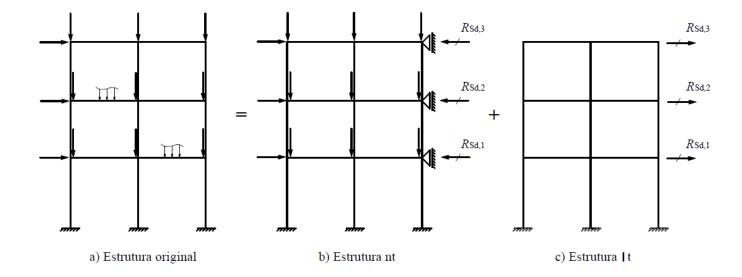
Cargas oriundas das imperfeições iniciais são obtidas por:

Desaprumo inicial = H/333 ou

Carga nocional de 0,3% das cargas gravitacionais

Alta deslocabilidade

Se
$$\frac{\Delta}{\delta} > 1.4$$


Análise de segunda ordem com Redução da rigidez à flexão e axial para 80% (0,8xE)

Método aproximado simplificado para obtenção da relação

$$B_2 = \frac{1}{1 - \frac{1}{R_s} \cdot \frac{\delta}{H} \cdot \sum \frac{N_{Sd}}{H_{Sd}}}$$

- é um coeficiente de ajuste, igual a 0,85 nas estruturas onde o sistema resistente a ações horizontais
 é constituído apenas por subestruturas de contraventamento formadas por pórticos nos quais
 a estabilidade lateral é assegurada pela rigidez à flexão das barras e pela capacidade de
 transmissão de momentos das ligações e igual a 1,0 para todas as outras estruturas;
- $\Delta_{
 m h}$ é o deslocamento horizontal relativo entre os níveis superior e inferior (deslocamento interpavimento) do andar considerado, obtido da análise de primeira ordem, na estrutura original (Figura D.1-a) ou na estrutura ℓt (Figura D.1-c). Se $\Delta_{
 m h}$ possuir valores diferentes em um mesmo andar, deve ser tomado um valor ponderado para esse deslocamento, em função da proporção das cargas gravitacionais atuantes ou, de modo conservador, o maior valor;
- $\sum H_{
 m Sd}$ é a força cortante no andar, produzida pelas forças horizontais de cálculo atuantes, usadas para determinar $\Delta_{
 m h}$ e obtida na estrutura original (Figura D.1-a) ou na estrutura ℓ t (Figura D.1-c);
- H é a altura do andar (distância entre eixos de vigas de dois andares consecutivos ou entre eixos de vigas e a base, no caso do primeiro andar).

Método aproximado para obtenção dos esforços amplificados

Simplificação conservadora

$$Rm = 0.85$$

$$M_{sd} = B_2.M_{sd1}$$

$$N_{Sd} = B_2.M_{Sd2}$$

Sendo Msd1 e Nsd1, os esforços obtidos na análise de 1ª ordem

$$C_{\rm m} = 0,60 - 0,40 \frac{M_1}{M_2}$$

$$M_{\rm Sd} = B_1 \, M_{\rm nt} + B_2 \, M_{\ell}$$

$$N_{\rm Sd} = N_{\rm nt} + B_2 N_{\ell t}$$

$$C_{\rm m} = 0,60 - 0,40 - \frac{M_{\rm 1}}{M_{\rm 2}} \qquad M_{\rm Sd} = B_{\rm 1} \, M_{\rm nt} + B_{\rm 2} \, M_{\rm \ell t} \\ N_{\rm Sd} = N_{\rm nt} + B_{\rm 2} \, N_{\rm \ell t} \qquad B_{\rm 1} = \frac{C_{\rm m}}{1 - \frac{N_{\rm Sd1}}{N_{\rm 2}}} \geq 1,0$$